
SFA Modernization Partner
United States Department of Education

Student Financial Assistance

EAI Core Architecture

EAI Build and Test Report

Release 1

Task Order #54

Deliverable #54.1.5

August 28, 2001

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 1
BUILD AND TEST REPORT

JULY 20, 2001 54 – 54.1.5 2

TABLE OF CONTENTS
TABLE OF CONTENTS ..2

1 INTRODUCTION..5

1.1 OBJECTIVES..5

1.2 SCOPE ...5

1.3 APPROACH..5

1.4 ORGANIZATION ..5

2 EAI TEST METHODOLOGY ...7

2.1 TESTING PROCESS ..7

2.1.1 Test Scenario Description ..7

2.1.2 Test Scenario Dependencies ..7

2.1.3 Test Scenario Detailed Design Description ...7

2.1.4 Test Scenario Inputs...7

2.1.5 Test Scenario Expected Results ...7

2.2 TEST ENVIRONMENT ARCHITECTURE DESIGN...9

3 EAI COMPONENT TESTS..10

3.1 EAI COMPONENT TEST FOR BTRADE...10

3.1.1 bTrade Test Scenario Description..10

3.1.2 bTrade Test Scenario Detailed Design Description ...10

3.1.3 bTrade Test Scenario Dependencies ..13

3.1.4 bTrade Test Scenario Inputs ..14

3.1.5 bTrade Test Scenario Expected Results...15

3.2 EAI COMPONENT TEST FOR CPS...17

3.2.1 CPS Test Scenario Description ..17

3.2.2 CPS Test Scenario Detailed Design Description ...18

3.2.3 CPS Test Scenario Dependencies ..20

3.2.4 CPS Test Scenario Inputs...21

3.2.5 CPS Test Scenario Expected Results ...22

3.3 EAI COMPONENT TEST FOR DLSS ..25

3.3.1 DLSS Test Scenario Description ...25

3.3.2 DLSS Test Scenario Detailed Design Description...26

3.3.3 DLSS Test Scenario Dependencies..29

3.3.4 DLSS Test Scenario Inputs ..32

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 1
BUILD AND TEST REPORT

JULY 20, 2001 54 – 54.1.5 3

3.3.5 DLSS Test Scenario Expected Results ..33

3.4 EAI COMPONENT TEST FOR NSLDS – BATCH ..34

3.4.1 NSLDS – Batch Test Scenario Description ..34

3.4.2 NSLDS – Batch Test Scenario Detailed Design Description35

3.4.3 NSLDS - Batch Test Scenario Dependencies ..39

3.4.4 NSLDS – Batch Test Scenario Inputs...41

3.4.5 NSLDS - Batch Test Scenario Expected Results...42

3.5 EAI COMPONENT TEST FOR NSLDS – COOL:GEN..43

3.5.1 NSLDS – Cool:Gen Test Scenario Description ...43

3.5.2 NSLDS – Cool:Gen Test Scenario Detailed Design Description43

3.5.3 NSLDS – Cool:Gen Test Scenario Dependencies ...47

3.5.4 NSLDS – Cool:Gen Test Scenario Inputs..47

3.5.5 NSLDS – Cool:Gen Test Scenario Expected Results ..47

3.6 EAI COMPONENT TEST FOR PEPS...50

3.6.1 PEPS Test Scenario Description ..50

3.6.2 PEPS Test Scenario Detailed Design Description ...50

3.6.3 PEPS Test Scenario Dependencies ..52

3.6.4 PEPS Test Scenario Inputs...53

3.6.5 PEPS Test Scenario Expected Results ...54

4 EAI COMPONENT MIGRATION..56

4.1 EAI COMPONENT MIGRATION FOR BTRADE ...56

4.1.1 System Installation...56

4.1.2 Networking ..56

4.1.3 Configuration ...57

4.2 EAI COMPONENT MIGRATION FOR CPS AND NSLDS ..58

4.2.1 System Installation...58

4.2.2 Networking ..58

4.2.3 Configuration on the CPS System ...58

4.2.4 Configuration on the NSLDS System..58

4.2.5 MQ Object Definitions...59

4.2.6 Other CPS and NSLDS Migration Considerations ..59

4.3 EAI COMPONENT MIGRATION FOR DLSS ...60

4.3.1 System Installation...60

4.3.2 Networking ..60

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE RELEASE 1
BUILD AND TEST REPORT

JULY 20, 2001 54 – 54.1.5 4

4.3.3 Configuration ...60

4.4 EAI COMPONENT MIGRATION FOR NSLDS-COOL:GEN ...61

4.4.1 System Installation...61

4.4.2 Networking ..62

4.4.3 Configuration ...62

4.5 EAI COMPONENT MIGRATION FOR PEPS..62

4.5.1 System Installation...62

4.5.2 Networking ..62

4.5.3 Configuration ...63

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 1: INTRODUCTION

JULY 20, 2001 54 – 54.1.5 5

1 INTRODUCTION
The Build and Test phase of Release 1 of the Build and Test Report validates the architecture
design, services, and interfaces provided by the Release 1 EAI Core Architecture to support the
modernization effort of the Student Financial Assistance (SFA) Information Technology (IT)
Enterprise.

1.1 Objectives
The objective of the Build and Test Report (BTR) deliverable is to provide the information
necessary to execute and validate the EAI Core Architecture (Release 1), which will demonstrate
that the EAI Core architecture provides the functional capabilities required for connecting the
Release 1 legacy systems to the EAI Bus.

During the Build and Test phase all Release 1 architectural components shall be integrated into
the EAI Core Architecture and shall be verified to execute properly.

The tests outlined in this report are based on the functional scenarios developed to validate the
MQSeries Messaging and Transformation activities as designed in the Release 1 EAI Technical
Specifications Deliverable 54.1.3.

1.2 Scope
MQSeries messaging and transformation activities were developed for the following Release 1
SFA legacy systems:

• bTrade (TIVWAN)

• CPS

• DLSS

• NSLDS

• PEPS

The Build portion will ensure that all required components defined in the Release 1 EAI Core
Architecture are installed, configured and operational.

The Test portion will ensure that the actual outputs produced conform to the expected outputs as
defined by each test scenario.

1.3 Approach
The following approach was used to develop the EAI Build and Test Report:

• Review of the EAI Core Architecture from an interface perspective.

• Review of the functional services defined for each Release 1 legacy system.

• Development of test scenarios that validate the MQSeries messaging and transformation
architecture to connect each of the Release 1 legacy systems to the EAI Bus.

1.4 Organization
This deliverable is divided into the following sections:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 1: INTRODUCTION

JULY 20, 2001 54 – 54.1.5 6

• Section 1 – Introduction

• Section 2 – EAI Test Methodology
The Build and Test procedures will focus on the validation of the architectural design of the
Release 1 EAI Core Architecture. The test scenario descriptions will provide the objective
and an overview of the test to be performed, function(s) exercised, and any other pertinent
aspects of the test scenario. Test scenario inputs, expected results and acceptance criteria are
discussed.

• Section 3 – EAI Component Tests
The component tests for each legacy system are detailed and diagrams are used to explain the
flow of data between the different EAI components. As messages flowed from queue to
queue the data was verified. The same component testing logic was applied to the MQSI
message flows.

• Section 4 – EAI Component Migration
The migration of the Release 1 EAI Core components as designed and developed are
dependent upon the specific legacy system requirements, required licensing, and legacy
system owner approval for migrating each legacy system to production environment. For
each legacy system the system installation pre-requisites, the networking dependencies, and
the required configuration are defined and documented.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 2: EAI TEST METHODOLOGY

JULY 20, 2001 54 – 54.1.5 7

2 EAI TEST METHODOLOGY

2.1 Testing Process
The Build and Test procedures will focus on the validation of the architectural design of the Release 1
EAI Core Architecture.

To assist in the execution and demonstration of the EAI Core functionality for each Release 1 legacy
system the EAI Core team developed a test driver application. This test driver application does not
provide any business functionality, but provides a user interface for entering or retrieving message data
from a file and sending messages to each legacy system for processing. Upon completion of each test
execution, the results are returned to the test driver application for display and to be written to an output
directory to save a hard copy of the test results. This test driver application is not meant to be a
production ready application, but as an aid in the execution and demonstration of the Release 1 EAI Core
Architecture validation process.

For each system tested, the following sections will be defined:

• Test Scenario Description

• Test Scenario Detailed Design Description

• Test Scenario Dependencies

• Test Scenario Inputs

• Test Scenario Expected Results

2.1.1 Test Scenario Description
This section provides the objective and an overview of the test to be performed and function(s) exercised
relative to the MQSeries and MQSeries Integrator and legacy system tests.

2.1.2 Test Scenario Dependencies
This section defines the system dependencies, both hardware and software that must be met prior to test
execution.

2.1.3 Test Scenario Detailed Design Description
This section provides test scenario design detail via diagrams and text descriptions of what the diagrams
represent. Each detail diagram depicts the test scenario’s process flow by identifying each component and
the interfaces involved. The text portion provides a description of what is occurring within each process
module, what information is being shared, and how it is being transferred between products.

2.1.4 Test Scenario Inputs
This section provides a description of the data required to execute the test scenario.

2.1.5 Test Scenario Expected Results
This section provides the expected results, or output, of the particular test scenario. The expected results
for each test scenario are the same as if the transaction were executed on each system without using

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 2: EAI TEST METHODOLOGY

JULY 20, 2001 54 – 54.1.5 8

MQSeries as the message transport. Acceptance of the test is gained by demonstrating to Accenture and
SFA that the transaction is executed successfully (i.e. the expected results are returned).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 2: EAI TEST METHODOLOGY

JULY 20, 2001 54 – 54.1.5 9

2.2 Test Environment Architecture Design
The intent of the diagram is to show the components of the EAI Bus Architecture implemented for
Release 1 of the EAI Core. The location of MQSeries, MQSI, databases and adapters are shown.

EAI BUS Infrastructure
CPS - OS390

 EAI BUS Architecture Overview (Test)

EAI BUS Servers Clusters

SU35E17

MQSeries Server

MQSeries Server

NSLDS - OS390

PEPS - HP-UX

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS - ALPHA OPEN VMS
MQSeries

Server

QMgrF

b Trade - HP-UX
MQSeries

Server

QMgrG

QMgrB

SU35E16

MQSeries Server

QMgrA

Websphere Application
Server

 Oracle

Web Server

Web Server

Adapter

MQSI Broker
2

Applications
QMgrC

MQSI Broker
1

Config
Mgr

MQSI Development NT Server

DB2

D
ep

lo
ym

en
t

Applications

Applications

Applications

Applications

Applications

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

MQSeries
Server

QMgrW
Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

DB2

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 10

3 EAI COMPONENT TESTS

3.1 EAI Component Test for bTrade
The bTrade application is a replacement for the existing TIV/WAN interface. TIV/WAN provides the
functionality for sending and retrieving messages/data via secure network, Value Added Network (VAN).
As part of the SFA Modernization effort, SFA is moving towards a secure Internet file transfer capability
to reduce the dependency on external services, i.e. VAN, and utilize the Internet. The bTrade application
was chosen for Release 1 of the Core to provide this validation and integration into the EAI Bus to
provide this file transfer capability since it has impacts on all SFA systems since it will be a replacement
of the TIV/WAN system.

3.1.1 bTrade Test Scenario Description
bTrade has provided a Java based application connector API to support the retrieval of messages from a
bTrade mailbox. The EAI Core Architecture team has developed an MQ Adapter to interface with the
bTrade application, through the bTrade connector API, to extract data from a mailbox on the bTrade
server. The test scenario chosen for the EAI Build and Test will validate the ability to extract message
data from a test mailbox configured for the EAI team per the bTrade connector API specifications.

3.1.2 bTrade Test Scenario Detailed Design Description
The bTrade test scenario starts with a request for mailbox data from the Websphere Application Server.
The message is put on a queue and is routed through the EAI Bus for transformation via MQSI. The
message is then routed to the bTrade system where the MQ adapter reads the message from the queue and
calls the bTrade connector API with the appropriate parameters. The connector API will check the status
of the specified mailbox, retrieve the data from the mailbox and return the results back to the MQ
Adapter. The results will be put on a message queue and sent back to the test application

Errors will be reported in the MQ bTrade debug output (/home/mqm/btrade/debug.out) and the MQ
bTrade XML reply files. (/home/mqm/btrade/temp.’Date’.out).

All application and MQ errors and exceptions are printed to the MQSeries bTrade standard error and
standard output streams. In addition, all application and MQ errors and exceptions are returned in the
MQ reply message.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 11

The flow of a MQSeries Request type message through the EAI bTrade Request Design is as follows:

1) A bTrade MQSeries Request type message is put to the Cluster queue EAI.FROM.WAS.GETMAIL
from the WAS box.

2) The MQSeries Queue Manager (logically referred to as SU35E5) on the WAS moves the message to
the queue EAI.FROM.WAS.GETMAIL.

3) The message is pulled from the EAI.FROM.WAS.GETMAIL and processed through the bTrade
MQSI Message Flow.

4) The output message from the bTrade MQSI Message Flow is put to the queue
EAI.TO.BTRADE.GETMAIL.

5) The MQSeries Queue Manager (logically referred to as SU35E16/SU35E17) on the EAI Bus server
moves the message to the queue BTRADE.FROM.EAI.GETMAIL and based on the attributes set up
in the queue, the MQSeries Queue Manager (HPDEV1) on bTrade puts a trigger message on an
initiation queue: BTRADE.INIT.

6) The MQSeries Trigger Monitor application pulls the trigger message on the BTRADE.INIT.

7) The MQSeries Trigger Monitor application starts the bTrade MQ Wrapper/Adapter application.

8) The bTrade MQ Wrapper/Adapter pulls the message from the BTRADE.FROM.EAI.GETMAIL.

9) The bTrade MQ Wrapper/Adapter application calls the bTrade Connector API to pull data from a
bTrade mailbox and pass back the file/message retrieved.

bTrade
MQSI

message
flow

bTrade
Mailbox

bTrade MQ
Wrapper/
Adapter:

 Get Mail
Function

MQSeries
Trigger
Monitor

EAI.FROM.WAS.
GETMAIL

SU35E16 or SU35E17WAS.FROM.EAI.REPLYMAIL

WAS.FROM.EAI.REPLYMAIL

QL

QL

(1) (2) (3) (4)

(7)

(5)

(10)

bTrade
Request

BTRADE.FROM.EAI.GETMAIL

Qmgr: HPDEV1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI bTrade Data Flow

bTrade HP-UX
Environment

bTrade
Connector

API

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.BTRADE.
GETMAIL

(8)

(9)

(6)

QR

QR

QL
BTRADE.INIT

SYSTEM.CLUSTER.TRANSMIT.
QUEUE

QR

QL

(12) (11)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 12

10) The bTrade MQ Wrapper/Adapter puts the bTrade file/message into the Transmission Queue for
logically referred to as SU35E16 or SU35E17.

11) The MQSeries Queue Manager (HPDEV1) on bTrade moves the reply message to the queue
WAS.FROM.EAI.REPLYMAIL.

12) The MQSeries Queue Manager (logically referred to as SU35E16/SU35E17) on the EAI Bus server
moves the reply message to the queue WAS.FROM.EAI.REPLYMAIL.

Files

The following files will be used to execute the Test Scenario for the bTrade system,

• Btinp1.xml – contains the mailbox name of LINDALOYD

• Btinp2.xml – contains the mailbox name of IBMMQ

• Btinvld.xml – contains an invalid mailbox name of FREDMQ.

Each is an XML file with the required mailbox name and parameters as specified in the bTrade
specification document. These files are located in /www/dev/eai/input/ and are presented by the WAS
Test application in a drop list on the bTrade web page.

Adapters

This scenario uses the WAS Test application and associated MQ Adapters, and the custom bTrade MQ
Adapter, written in Java. The technical specifications for the bTrade adapter are defined in the EAI
Technical Specifications – Release 1, Deliverable 54.1.3.

MQSI

The MQSI nodes and their function are documented below.

Node Name Node Type Function
Input Message Queue
From WAS

MQInput This node retrieves messages from the flow input queue
EAI.FROM.WAS.GETMAIL

Trace1 Trace This node provides a trace file showing the structure of input
messages.

Determine Request Type Filter This node routes processing within the flow based on the
RequestType. If RequestType =’1’ then processing continues
along the GetMail branch, otherwise PutMail is assumed.

Put Mail Compute This node builds the XML document which will be sent to bTrade,
mapping input fields to output fields. The node set request = 2
which indicates PutMail, connectorname to the mailbox ID and
request data to the input request data.

Output Queue to bTrade MQOutput This message puts messages to the remote queue
EAI.TO.BTRADE.GETMAIL which will cause them to be routed
to bTrade.

Output Trace Trace This node provides a trace file showing the structure of output
messages.

Get Mail Compute This node builds the XML document which will be sent to bTrade,
mapping input fields to output fields. The node set request = 1
which indicates GetMail and connectorname to the mailbox ID.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 13

3.1.3 bTrade Test Scenario Dependencies
• Execution of this test scenario requires MQSeries messaging running on all systems through which

the messages must travel. In the case of the bTrade test scenario this includes: logically referred to as
SU35E5, SU35E16 or SU35E17, bTrade server.

• In addition, MQSI must be running on either SU35E16 or SU35E17.

Test Data

The test data must be in a specific format. From the initial entry on the WebSphere Server through MQSI
and onto the adapter, each component is expecting the data a certain way. The data format is as follows:

The following XML schema defines the input and output data layout. The input XML is defined above
the dotted line. The output XML is defined above and below the dotted line (i.e. the output is represented
in the entire XML schema).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation xml:lang="en">
 MQRBTRADE XML schema
</xsd:documentation>
</xsd:annotation>
<xsd:element name="mqrbtrade" type="mqrbtradeType"/>
<xsd:complexType name="mqrbtradeType">
 <xsd:sequence>
 <xsd:element name="mqrequest" type="mqrequestType"/>
 <xsd:element name="mqstatus" type="mqstatusType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="mqdata" type="mqdataType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>

</xsd:complexType>
<xsd:complexType name="mqrequestType">
 <xsd:sequence>
 <xsd:element name="request" type="xsd:integer"/>
 <xsd:element name="language" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="customer" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="genschema" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="genusername" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="genpassword" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="gendsn" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="gennetservicename" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="environment" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="messagepath" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="connectorname" type="xsd:string"

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 14

 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="jdbcdriver" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>

</xsd:complexType>
<xsd:complexType name="mqstatusType">
 <xsd:sequence>
 <xsd:element name="rc" type="xsd:integer"/>
 <xsd:element name="status" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="mqdataType">
 <xsd:sequence>
 <xsd:element name="data" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

MQSeries Objects Used
Object Name Object Type Description
BTRADE.DEAD.QUEUE Local Queue Local queue defined as the system dead letter queue.

Message is placed on the queue when it is undeliverable.
BTRADE.SU35E16 Channel Sender Channel. Used to send messages to SU35E16.
SU35E16.BTRADE Channel Receiver Channel. Used to receive messages from

SU35E16.
SU35E16 Local Queue Local queue defined as a transmission queue. Used when

sending data from bTrade to SU35E16.
BTRADE.SU35E17 Channel Sender Channel. Used to send messages to SU35E17.
SU35E17.BTRADE Channel Receiver Channel. Used to receive messages from

SU35E17.
SU35E17 Local Queue Local queue defined as a transmission queue. Used when

sending data from bTrade to SU35E17.
BTRADE.FROM.EAI.GETMAIL Local Queue Local queue used to receive data as input for the bTrade

Adapter application.
BTRADE.INIT Local Queue Local queue defined as an initiation queue.
SU35E5 Remote Queue Remote queue used as a queue manager alias to be able to

reroute the messages back to the SU35E5 server.

3.1.4 bTrade Test Scenario Inputs
Each input file must be of a specific format in order for it to be recognized by the message flow and the
MQSeries adapter. The input files for the bTrade system are as follows:

GETALL XML request tr1.xml – This file is an XML document, which requests all messages
from the IBMTST mailbox.

<mqrbtrade>
 <mqrequest>
 <request>1</request>
 <language>EN-US</language>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 15

 <customer>NCS</customer>
 <genschema>btradev</genschema>
 <genusername>mailbox</genusername>
 <genpassword>btradev</genpassword>
 <gendsn>btradev</gendsn>
 <gennetservicename>btradev</gennetservicename>
 <environment>DEVELOPMENT</environment>
 <messagepath>/eaadmin/data</messagepath>
 <connectorname>IBMTST</connectorname>
 <jdbcdriver>jdbc:oracle:oci8:@</jdbcdriver>
 </mqrequest>
</mqrbtrade>

3.1.5 bTrade Test Scenario Expected Results
A message is sent to the EAI Bus where the message is transformed and then sent on to the bTrade
system. The bTrade MQ Adapter is called which executes the bTrade API to retrieve the mailbox data.
If the mailbox does not contain any data corresponding to status code 9, the applications returns a result
of “Mailbox Empty”. When data is in the mailbox with the correct status code, the EAI bTrade test
scenario returns the file where the data is located.

A positive result of this test is the successful retrieval of a message.

Tr1debug.out – This file shows the full program trace output from a GetMail request.
-- listing properties --
user.language=en
java.home=c:\jdk1.1.8\bin\..
java.vendor.url.bug=
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1.8
file.separator=\
line.separator=

Debug=a
user.region=US
file.encoding=Cp1252
java.compiler=ibmjitc
java.vendor=IBM Corporation
user.timezone=GMT
user.name=nich
os.arch=x86
java.fullversion=JDK 1.1.8 IBM build n118p-19991124 (J...
os.name=Windows NT
java.vendor.url=http://www.ibm.com/
user.dir=C:\doe\btrade\MQRbTrade
java.class.path=C:\PROGRA~1\MQSeries\java\lib;C:\PROG...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\
MQRbTrade DEBUG: Main Started
MQRbTrade DEBUG: qmgr = queue = INBOUND.QUEUE
MQRbTrade DEBUG: inifn = MQbTrade.ini msgfn = MQbTrade.dat
MQRbTrade DEBUG: Input queue open gmo = 2

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 16

MQRbTrade DUMP: Input request received
MQRequest Dump:
 request = 1
 language = EN-US
 customer = NCS
 genschema = btradev
 genusername = mailbox
 genpassword = btradev
 gendsn = btradev
 environment = DEVELOPMENT
 messagepath = /eaadmin/data
 connectorname = IBMTST
 jdbcdriver = jdbc:oracle:oci8:@
MQStatus Dump:
 rc = 0
 status =
MQData Dump:
 charformat =
 dataformat =
 data =
MQRbTrade DEBUG: Reply queue open pmo = 66
MQRbTrade DEBUG: MQbTrade.ini written
MQRbTrade DEBUG: bTrade connection established.
MQRbTrade DEBUG: GETALL started
MQRbTrade DEBUG: 1 bTrade.com messages available
MQRbTrade DEBUG: Top of GET loop
MQRbTrade DEBUG: acceptMessage invoked
MQRbTrade DEBUG: MQ Message put
MQRbTrade DEBUG: GETALL finished
MQRbTrade DEBUG: End of requests
MQRbTrade DEBUG: All requests done

Tr1xml.out – This file contains the XML document created as a result of a GetMail request for the
IBMTST mailbox.

<mqbtrade><mqrequest><request>1</request><language>EN-
US</language><customer>NCS</customer><genschema>btradev</genschema><genuserna
me>mailbox</genusername><genpassword>btradev</genpassword><gendsn>btradev</ge
ndsn><environment>DEVELOPMENT</environment><messagepath>/eaadmin/data</messag
epath><connectorname>IBMTST</connectorname><jdbcdriver>jdbc:oracle:oci8:@</jd
bcdriver></mqrequest><mqstatus><rc>0</rc><status></status></mqstatus><mqdata>
<charformat> </charformat><dataformat> </dataformat><data>example test data
file
illustrating a piece of mail
that is supposed to be
in a btrade mailbox</data></mqdata></mqbtrade>

• This bTrade test scenario was executed by the Release 1 EAI Core team and the expected results were

received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 17

3.2 EAI Component Test for CPS
The CPS system is comprised of CICS transactions developed to provide the required application
functionality. EAI enablement of the CPS system required the installation and configuration of the
MQSeries CICS Adapter to provide a real-time request/reply of system data through the EAI Middleware.
The EAI Bus allows applications to send messages to the CPS system and utilize the existing CICS
transactions to retrieve data in real-time from an external server, i.e. a web site.

3.2.1 CPS Test Scenario Description
The application to be used for the EAI CPS component test is the CPS application status inquiry program.
The CPS application status inquiry is a CICS program that provides the loan status for a specified input
Social Security Number (SSN). A request message, consisting of a SSN and a name id, is originated from
the test application. The message is routed through the MQSeries messaging infrastructure using the EAI
bus infrastructure. The message is transformed by MQSI to append the required records to the message
data. The message is then routed from the EAI Bus to the CPS system using the MQSeries CICS DPL
Bridge. The CICS DPL Bridge enables the originating application to access information residing in the
CPS OS/390 platform by invoking the CICS program running in the CICS environment to process the
inquiry message and send a reply back.

The CPS application status inquiry program (C7392MQ1) will process the request message, access the
database, format the reply message and return the result back to the originating source by way of the EAI
bus.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 18

3.2.2 CPS Test Scenario Detailed Design Description
The application to be used for the EAI CPS core test is the Application Status Query

1) A message consisting of SSN and NameId will be sent from the WebSphere Application Server
(WAS) to the EAI bus. (Shown by 1 & 2 in diagram above)

2) In the MQSI message flow, the message will be transformed by modifying the MQSeries header. The
MQSI message flow will also insert data into a database via the MQSI “DataInsert” node. (Shown by
3 in diagram above)

3) The message will then be sent to the CPS system where the CICS Bridge Monitor will query the
message and start the CICS DPL task. (Shown in 5 & 6 in diagram above)

4) The CICS DPL task will read the message from the queue and call the Application Status Query
application passing it the message as the parameter. The Application Status Query application will
query the data from DB2 and return the response back to the CICS DPL task. (Shown by 7, 8 & 9 in
diagram above)

5) The CICS DPL task will take the response data and write it on the queue to be sent back to the source
system. (Shown by 10, 11 & 12 above)

Files

Following is a list of the data files used for test input. The data contains the program name to be executed
by the CICS DPL bridge and the SSN and Name ID of the subject

CPS
MQSI

message
flow

DB2

CICS Bridge
DPL Task

CKBP/
CSQCBP00

CICS Bridge
Monitor
CKBR/

CSQCBR00

SYSTEM.CLUSTER.
TRANSMIT.QUEUE EAI.FROM.WAS.

REQAPPSTATUS

SU35E16 or SU35E17
WAS.FROM.EAI.REPLYAPPSTATUSWAS.FROM.EAI.REPLYAPPSTATUS

QL

QL

(1) (2) (3)

(11)

(4)

(7)

(5)

(10)

CPS
Request

CPT1.CICSDEV1.BRIDGE.QUEUE

Qmgr: CPT1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI CPS CICS DPL Bridge Adapter
Data Flow

CPS OS/390
Environment

Request
Application

Status

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.CPS.
REQAPPSTATUS

(8)

(9)

(6)

QR

QR

(12)

QR

QR

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 19

File Specification Function

/www/dev/eai/input/cps/cpinp1.xml

Test input file residing on the SU35E5. Contains the data:
C7392MQ1 265234899AX

/www/dev/eai/input/cps/cpinp2.xml Test input file residing on the SU35E5. Contains the data:
C7392MQ1 918264155WB

/www/dev/eai/input/cps/cpinp3.xml

Test input file residing on the SU35E5. Contains the data:
C7392MQ1 215682344CP

/www/dev/eai/input/cps/cpinp4.xml Test input file residing on the SU35E5. Contains the data:
C7392MQ1 265312268TX

/www/dev/eai/input/cps/cpinp5.xml

Test input file residing on the SU35E5. Contains the data:
C7392MQ1 556341287DC

Adapters

The MQSeries CICS Bridge Monitor and DPL Bridge are used on the CPS target system. These are out
of the box MQSeries adapters and have been configured as part of the EAI Core Architecture
implementation to validate the CICS Program execution.

To start the MQSeries CICS Bridge Monitor:

Log into the CPS CICS region and use the CICS Execution Command Interface (CECI) to START the
MQSeries CICS Bridge Monitor CICS transaction “CKBR”. The following is the CECI command and
options used:

START TR(CKBR) FR('Q=CPT1.CICSDEV2.BRIDGE.QUEUE,AUTH=LOCAL')

The MQSeries CICS Bridge Monitor

Inputs: This program queries the MQSeries queue that it is monitoring to determine its execution
path.

Outputs: No output data is produced. It starts the DPL Bridge.

The MQSeries CICS DPL Bridge

Inputs: Message data from the queue. This data is application dependent. Maximum length of
application data can be up to 32k.

Outputs: Application specific data is written to a MQSeries queue.

MQSI

The MQSI nodes and their function are documented below.

Node Name Node Type Function
CPS Applicant Request MQInput Read message from the input queue
Verify SSN Filter Verify SSN.

If SSN = ‘XXXXXXXXX’ goto false terminal
If SSN <> ‘XXXXXXXXX’ goto true terminal (<> means not equals)

Invalid DCN SSN MQOutput Reached from the failure terminal of the filter node if a failure is
detected during computation. Message is written to the
CORE.CPS.FAILURE queue.

Unkown filter error MQOutput Reached from the unknown terminal of the filter node if the expression
evaluated is unknown. Message is written to the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 20

Node Name Node Type Function
CORE.CPS.UNKNOWN queue.

Build CPS Output
Message

Compute Take XML as input and create MRM. Input is taken from the true
terminal of the filter node. This node appends required data fields to
message. The out terminal outputs the transformed message and inserts
data to a DB2 table using the datainsert1 node.
The failure terminal is used to propagate the message if a failure is
detected during computation.

Build Error Message Compute Reached via the failure terminal of the filter node. Build error message
for invalid SSN. Out terminal goes to error reply. The failure terminal
goes to trace1 node, which is used for debugging purposes.

DataInsert1 DataInsert Insert the SSN to a DB2 table.
Error Reply MQReply Reached via the out terminal of the build error message node. Puts

error message on reply to queue
CPS Queue MQOutput Reached via the out terminal of the build CPS output message. Puts

message on queue for delivery to CPS
Trace on Input Trace Reached via the failure and catch terminal of the CPS Applicant

Request node. The trace node is used for debugging purposes.
Trace1 Trace Failure to build message goes to trace node. Trace node is used for

debugging purposes.

3.2.3 CPS Test Scenario Dependencies
The following defines the dependencies and resource requirements for the sample CPS test.

• MQSeries running on logically referred to as SU35E5, SU35E16 or SU35E17, and CPT1.

• MQSI must be running on either logically referred to as SU35E16 or SU35E17.

• The DB2 database on CPS must be available.

Test Data

The test data must be in a specific format. From the initial entry on the WebSphere Server through MQSI
and onto the adapter, each component is expecting the data a certain way. The data format is as follows:

The following table describes the Record layout required for input and output data for the CPS
Application Status Query program.

Element Name Start
Position

End
Position

Size Input/Output
Field

Permitted Value Override

Social Security Number 1 9 9 I/O
Name Id 10 11 2 I/O
Return Code

12 14 3 O 000 – Successful
 100 - App not found on FE/W
 hold table
 900 – Invalid Commarea length
(must be 39)

Date Completed 15 22 8 O Date – CCYYMMDD format
FEW Hold Flag 23 23 1 O
DOB Prior 24 24 1 O
Graduation Status 25 25 1 O
Married Status 26 26 1 O
Orphan 27 27 1 O

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 21

Element Name Start
Position

End
Position

Size Input/Output
Field

Permitted Value Override

Veteran 28 28 1 O
Dependents 29 29 1 O
Children 30 30 1 O
Elec App Entry Src 31 31 1 O
Misc Dates 32 40 8 O Date – CCYYMMDD format

MQSeries Objects Used

Object Name Object Type Description
CPT1.DEAD.QUEUE Local Queue Local queue defined as the system dead letter queue.

Message are placed on the queue when it is undeliverable.
CPT1.SU35E16 Channel Sender Channel. Used to send messages to SU35E16.
SU35E16.CPT1 Channel Receiver Channel. Used to receive messages from

SU35E16.
SU35E16 Local Queue Local queue defined as a transmission queue. Used when

sending datafrom CPT1 to SU35E16.
CPT1.SU35E17 Channel Sender Channel. Used to send messages to SU35E17.
SU35E17.CPT1 Channel Receiver Channel. Used to receive messages from

SU35E17.
SU35E17 Local Queue Local queue defined as a transmission queue. Used when

sending datafrom CPT1 to SU35E17.
CPT1.CICSDEV2.BRIDGE.QUEUE Local Queue Local queue used to receive data as input for the

Application Status Query application..
SU35E5 Remote Queue Remote queue used as a queue manager alias to be able to

reroute the messages back to the SU35E5 server.

3.2.4 CPS Test Scenario Inputs
Following are 5 test input file contents for the CPS test scenario:

Input file cpinp1.xml

<?xml version = “1.0”?>
<cpsRoot>
 <ssn>100010109</ssn>
 <nameid>VP</nameid>
</cpsRoot>

Input file cpinp2.xml

<?xml version = “1.0”?>
<cpsRoot>
 <ssn>100010403</ssn>
 <nameid>TS</nameid>
</cpsRoot>

Input file cpinp3.xml

<?xml version = “1.0”?>
<cpsRoot>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 22

 <ssn>225400812</ssn>
 <nameid>ED</nameid>
</cpsRoot>

Input file cpinp4.xml

<?xml version = “1.0”?>
<cpsRoot>
 <ssn>500902409</ssn>
 <nameid> ED</nameid>
</cpsRoot>

Input file cpinp5.xml

<?xml version = “1.0”?>
<cpsRoot>
 <ssn>555115021</ssn>
 <nameid> FO</nameid>
</cpsRoot>

3.2.5 CPS Test Scenario Expected Results
If the test scenario provides the output as detailed below or returns one of the return codes, then we can
say the acceptance criteria has been met. If each record returned matches that exactly as shown below,
then the expected results have been returned. Within each returned record are the social security number
and nameid that were included in the input. Other results that may be returned are:

If the CPS application doesn’t find the response information, the return code of 100 - App not found on
FE/W hold table will be returned.

If the structure of the data is incorrect the return code of 900 - Invalid Commarea length (must be 39) will
be returned

If the CPS application encounters any other errors the value of the SQL encountered will be returned.

If the CPS application can return a valid response the return code of 000 - Successful, data returned will
be returned.

Response message definition

01 DFHCOMMAREA.
05 PARM-WEB-SSN PIC X(09).
05 PARM-WEB-NAME-ID PIC X(02).
05 PARM-RETURN-CODE PIC X(03).

88 SUCCESSFUL-LOOKUP VALUE '000'
88 RECORD-NOT-FOUND VALUE '100'
88 INVALID-CA-LENGTH VALUE '900'

05 PARM-DATE-COMPLETED PIC 9(08).
05 PARM-FEW-HOLD-FLAG PIC X(01).
05 PARM-DOB-PRIOR PIC X(01).
05 PARM-STAT-GRAD PIC X(01).
05 PARM-STAT-MARRIED PIC X(01).
05 PARM-ORPHAN PIC X(01).
05 PARM-VETERAN PIC X(01).
05 PARM-HAVE-DEP PIC X(01).
05 PARM-HAVE-CHILDREN PIC X(01).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 23

05 PARM-ELEC-APP-ENTRY-SRC PIC X(01).
05 PARM-FEW-DATE-ADDED PIC 9(08).

Test Results using data file cpinp1.xml:

Web SSN: 100010109
Web Name ID: VP
Return Code: 000
Date Completed: 20001204
Hold Flag:
DOB Prior: 2
Graduation Status: 2
Marital Status: 1
Orphan Status: 2
Veteran Status: 1
Has Dependents: 2
Has Children: 2
Application Source: 7
Date Added: 20001204
100010109VP00020001204 2212122720001204

Test Results using data file cpinp2.xml:

Web SSN: 100010403
Web Name ID: TS
Return Code: 000
Date Completed: 20001204
Hold Flag: Y
DOB Prior: 2
Graduation Status: 2
Marital Status: 2
Orphan Status: 2
Veteran Status: 2
Has Dependents: 2
Has Children: 2
Application Source: 7
Date Added: 20001204
100010403TS00020001204Y2222222720001204

Test Results using data file cpinp3.xml

Web SSN: 225400812
Web Name ID: ED
Return Code: 000
Date Completed: 20010102
Hold Flag:
DOB Prior: 2
Graduation Status: 2
Marital Status: 1
Orphan Status: 2
Veteran Status: 2
Has Dependents: 2
Has Children: 2
Application Source: 7

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 24

Date Added: 20001019
225400812ED00020010102 2212222720001019

Test Results using data file cpinp4.xml

Web SSN: 500902409
Web Name ID: ED
Return Code: 000
Date Completed: 20010102
Hold Flag:
DOB Prior: 2
Graduation Status: 2
Marital Status: 2
Orphan Status: 2
Veteran Status: 1
Has Dependents: 2
Has Children: 2
Application Source: 7
Date Added: 20001019
500902409ED00020010102 2222122720001019

Test Results using data file cpinp5.xml

Web SSN: 555115021
Web Name ID: FO
Return Code: 000
Date Completed: 20001204
Hold Flag: Y
DOB Prior: 2
Graduation Status: 2
Marital Status: 2
Orphan Status: 2
Veteran Status: 2
Has Dependents: 2
Has Children: 2
Application Source: 8
Date Added: 20001204
555115021FO00020001204Y2222222820001204

• This CPS test scenario was executed by the Release 1 EAI Core team and the expected results were
received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 25

3.3 EAI Component Test for DLSS
The DLSS system provides real-time and batch processing functionality on the Direct Loan Servicing
System. The EAI Bus provides the capability to access real-time DLSS transactions as well as the
processing of existing batch programs.

3.3.1 DLSS Test Scenario Description
This test will demonstrate the functionality of MQSeries messaging across disparate systems, the use of a
MQSeries Integrator Message flow, and the use of MQSeries adapters written for DLSS.

The application to be used for the EAI DLSS core test is the loan payoff application. A message
consisting of SSN will be sent from the WebSphere Application Server to the EAI bus. In the MQSI
message flow, the message will be transformed by appending required records to the message. The
message will then be sent to DLSS where an adapter will read from the queue, output the data to a flat file
and then release the sequence of programs from the OpenVMS batch queue. The Loan payoff programs
will process the file and create another file with the detail corresponding to each SSN initially sent to
DLSS. Following the execution of the Loan payoff program, the adapter will be run to read from the file
created by the loan payoff program and put the message(s) on the queue to be sent back to the Websphere
Application Server. Once the batch jobs have been released, there is a five-minute waiting period for an
output file to be generated. If no output file is found, an error message is returned to the Websphere
Application Server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 26

3.3.2 DLSS Test Scenario Detailed Design Description

The application to be used for the EAI DLSS core test is the loan payoff application.

1. A message consisting of SSN will be sent from the WebSphere Application Server (WAS) to the EAI
bus. (Shown by 1 & 2 in diagram above.)

2. In the MQSI message flow, the message will be transformed by appending required records to the
message (Shown by box in between (2) and (3) above.)

3. The message will then be sent to the DLSS system where an adapter will read from the queue and
output the data to a flat file and then release the sequence of programs from the OpenVMS batch
queue. (Shown by 3, 4, 5, 6 above.)

4. The Loan payoff application will process the file and in turn create another file with the detail
corresponding to each SSN and Name initially sent to DLSS. (Shown by 7, 8, 9.)

5. Following the execution of the Loan payoff application the adapter will be run to read from the file
created by the loan payoff application and put the message(s) on the queue to be sent back to the
Websphere Application Server (Shown by 10, 11, 12 above.).

Files

The table below contains the file specification and the function each file performs.

Loan
MQSI

message
flow

Flat
File

MQSeries
Adapter

MQSeries
Trigger
Monitor

WAS.TO.EAI.LOAN EAI.FROM.WAS.
LOAN

DLSS.TO.EAI.RESPONSELOAN
EAI.FROM.DLSS.RESPONSELOANWAS.FROM.EAI.RESPONSELOAN

QL

QL

QR

QR

(1) (2) (3)

(12)
(7)

(4)

(11)

Loan
Info

Request
DLSS.FROM.EAI.LOAN

Qmgr: CRDEV2

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI DLSS Data Flow

Compaq Alpha
OpenVMS

CRDEV2/DLSS

Loan
Program

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.DLSS.
LOAN

(8)

(10)

QR

QL

(9)

DLSS.INIT

(5)(6)

Flat
File

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 27

Device:[directory]filespec Function

MQS1:[MQM]TRIG_CHANNEL.COM Command file to to run the sender channel upon data
arriving in the local queue

MQS1:[MQM]START_MQ_BATCH_JOBS.CO
M

Command file to be executed upon system startup

MQS1:[MQM]EAI.TST Script file which contains definitions of the MQ objects
MQS_EXAMPLES: Logical pointing to directory containing MQSeries

sample programs.
MQS_INCLUDE Logical pointing to directory containing Include files

used in sample programs
TEST39:[TEST_39]MQLOAN.COM Command procedure triggered upon data hitting the

input queue. Receives file, releases batch jobs, sends
file

DUA10:[TEST_39.STACEY]MQPUT.LOG Log file of any errors on putting data to the queue
DUA10:[TEST_39.STACEY]MQGET.LOG Log file of any errors on retrieving data from the queue.
DUA10:[TEST_39.STACEY]NOFILE.DAT

File returned to initiating system if no records were
generated by the DLSS application within a 5 minute
period.

DUA10:[TEST_39.STACEY]CI001S1.FDL FDL file used to convert file from stream_lf to variable
length, maximum of 600 byte file.

DUA10:[TEST_39.STACEY]REPLYTO.DAT File which is used by both adapters. Contains the
replyto queue manager and the replyto queue.

CIS_X_INPUT:CI001S1.INP File spec of the input file for the DLSS application
CIS_X_XFER:CI024S1.DAT Filespec of the output file created by the DLSS

application
DUA10:[TEST_39]SCHED_DAILY_INTERFAC
E_MQSERIES.COM

File used to resubmit batch jobs.

CIS_LOG_D Directory which contains log files created by the batch
jobs.

MQS1:[MQM] Directory containing MQSeries system files
MQS2:[MQM] Directory containing MQSeries log files
MQS1:[MQM]EAI.TST File containing the SFA MQSeries object definitions

Adapters

There are 2 adapters on the DLSS system. MQGET.C and MQPUT.C are C programs. The MQGET.C
adapter reads messages from a MQSeries queue and writes the message to a file. The MQPUT.C adapter
reads data from a file and puts the data as a message to a MQSeries queue.

To run the programs on the DLSS system:

$MQPUT filename

 where filename is the name of a file.

$MQGET queuename filename

 where queuename is a valid MQSeries queue

 where filename is the name of a file

MQGET.C Adapter

Inputs: The program expects 2 parameters as input:

(1) MQSeries queue to read the message(s) from.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 28

Type of input parameter: MQCHAR48
Maximum length parameter: 48
Purpose of input parameter is to specify the queue to read messages from.

(2) Filename to write data to

Type of input parameter: char[500] – character array of size 500.
Maximum length of filename is 500 characters
Purpose of input parameter is to specify the file specification to write the message to.

Outputs: A file is generated as output. The filename is specified as input to the program.

MQPUT.C Adapter

Inputs: The program expects 1 parameter as input (1) filename to read data from.

 Type of input parameter char[500] – character array of size 500.

Maximum length of filename is 500 characters
Purpose of input parameter: Tells the adapter the filespec to read data from.

Outputs: Message is written to a MQSeries queue.

To compile the MQGET.C program: $cc / include_directory=mqs_include mqget.c

To link the program: $link mqget.obj,sys$input/options <ENTER>

 sys$share:mqm/shareable

To compile the MQPUT.C program: $cc / include_directory=mqs_include mqput.c

To link the program: $link mqput.obj,sys$input/options <ENTER>

 sys$share:mqm/shareable

MQSI

The MQSI nodes and their function are documented below.

Node Name Node Type Function
DLSS Loan Input MQInput Read message from input queue
Verify DCN SSN Filter Verify SSN.

If SSN = ‘XXXXXXXXX’ goto false terminal
If SSN <> ‘XXXXXXXXX’ goto true terminal (<> means not equals)

Invalid DCN SSN MQOutput Reached from the failure terminal of the filter node if a failure is
detected during computation. Message is written to the flow2.output
queue.

Unkown filter error MQOutput Reached from the unknown terminal of the filter node if the expression
evaluated is unknown. Message is written to the flow2.unkown queue.

Build DLSS Output
Message

Compute Take XML as input and create MRM. Input is taken from the true
terminal of the filter node. This node appends required data fields to
message. The out terminal outputs the transformed message.
The failure terminal is used to propagate the message if a failure is
detected during computation.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 29

Build Error Message Compute Reached via the failure terminal of the Filter Node. Build error
message for invalid SSN. Out terminal goes to error reply node.
Failure terminal goes to trace1 node which is used for debugging
purposes.

Error Reply MQReply Reached via the out terminal of the build error message node. Puts
error message on reply to queue

DLSS Queue MQOutput Reached via the out terminal of the build DLSS output message. Puts
message on queue for delivery to DLSS

Trace on Input Trace Reached via the failure and catch terminal of the DLSS loan input
node. The trace node is used for debugging purposes.

Trace on Build Trace Failure to build message goes to trace node. Trace node is used for
debugging purposes.

3.3.3 DLSS Test Scenario Dependencies
The following defines the dependencies and resource requirements for a successful DLSS test.

• MQSeries running on logically referred to as SU35E5, SU35E16 or SU35E17, and DLSS.

• MQSI must be running on either logically referred to as SU35E16 or SU35E17.

• Oracle Rdb database on DLSS must be available before test can be run.

• The TEST_39 test environment on DLSS.

Test Data

The DLSS user interface on the WebSphere Application Server accepts a social security number as input.
The MQSI message flow prepends and appends data to the social security number. The DLSS Loan
Application is expecting as input a record of the following format (shown below in the table). Each record
type has a specific meaning related to it as described below.

BAA - batch header record

DAA - D transaction type header record

DCN – Payoff Request

DZZ - D transaction type trailer

TZZ - Batch trailer record

The table below details the element names and other relevant data for each DLSS record.

 BAA Record

Type Element Names

Start

Position

End

Position

 Size

Input
Output
Field

Permitted Value Override

Batch Identifier 1 1 1 I/O D - Non-Financial Transaction
Transaction Type 2 3 2 I/O CN
Transaction Sequence
Number

4 7 4 I/O This starts at 1 and is incremented for each DCN in
the file

Loan ID 9 29 21 O
Social Security Number 30 38 9 I/O

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 30

 BAA Record

Type Element Names

Start

Position

End

Position

 Size

Input
Output
Field

Permitted Value Override

Effective Date 39 46 8 I/O
Daily Accrual Amount 47 57 11 O
Payoff Amount 58 68 11 O
Principal Balance Amount 69 79 11 O
Interest Balance Amount 80 90 11 O
Charges Balance Amount 91 101 11 O
Fees Balance Amount 102 112 11 O
Academic Completion Date 113 120 8 O
Enrollment Status 121 121 1 O
Effective Date 122 129 8 O
Loan Status 130 131 2 O
Change Date 132 139 8 O
Interest Rate 140 145 6 O
Interest Rate Category 146 146 1 O
Institution OPE Number 147 154 8 O
Loan Type Code 155 155 1 O 1 - Direct, Subsidized

2 - Direct, Unsubsidized
4 - Direct, PLUS
5 – Consolidation, Subsidized
6 – Consolidation, Unsubsidized
7 – Consolidation, PLUS

Application Receipt Date 156 163 8 O
Incentive Indicator 164 164 1 I Not yet in use
Current Repayment Plan 165 166 2 I

DAA Record
Type Element Names

Start
Position

End
Position

Size Source Permitted Value Override

Batch Identifier 1 1 1 I/O B – Transmission Header
Transaction Type 2 3 2 I/O AA
Reserved 4 8 5 I/O Spaces

File Create Date 9 16 8 I/O MMDDYYYY -

File Create Time 17 24 8 I/O HHMMsscc

Interface ID 25 30 6 I/O LO0101

Control Count 31 39 9 I/O Spaces

Reserved 40 55 16 I/O Spaces

Interface ID 56 61 6 I/O Spaces

Reserved 62 103 42 I/O Spaces

DCN Record
Type Element Names

Start
Position

End Pos Size Source Permitted Value Override

Batch Identifier 1 1 1 I/O D - Data Type Header
Transaction Type 2 3 2 I/O AA
Reserved 4 8 5 I/O Spaces

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 31

DCN Record
Type Element Names

Start
Position

End Pos Size Source Permitted Value Override

File Create Date 9 16 8 I/O MMDDYYYY

File Create Time 17 24 8 I/O HHMMsscc

Batch Number 25 28 4 I/O May use any number as long as it matches the
DZZ

Control Count 29 37 9 I/O Spaces

Reserved 38 103 66 I/O Spaces

DZZ Record
Type Element Names

Start
Position

End
Position

Size Source Permitted Value Override

Batch Identifier 1 1 1 I/O D - Data Type Header
Transaction Type 2 3 2 I/O ZZ
Reserved 4 8 5 I/O Spaces
File Create Date 9 16 8 I/O MMDDYYYY
File Create Time 17 24 8 I/O HHMMsscc
Batch Number 25 28 4 I/O Must match DAA
Control Count 29 37 9 I/O Number of DCN records
Reserved 38 103 66 I/O Spaces

TZZ Record
Type Element Names

Start
Position

End
Position

Size Source Permitted Value Override

Batch Identifier 1 1 1 I/O T - Transmission Trailer
Transaction Type 2 3 2 I/O ZZ
Reserved 4 8 5 I/O Spaces

File Create Date 9 16 8 I/O MMDDYYYY

File Create Time 17 24 8 I/O HHMMsscc

Interface ID 25 30 6 I/O Input - LO0101

Control Count 31 39 9 I/O Total records in file not including BAA & TZZ
records but includes all other AA & ZZ records

Reserved 40 55 16 I/O Spaces

Interface ID 56 61 6 I/O Spaces

Reserved 62 103 42 I/O Spaces

MQSeries Objects Used

Object Name Object Type Description
SU35E16 Local Queue Local queue defined as transmit queue. Used when

sending data from CRDEV2 to SU35E16.
SU35E17 Local Queue Local queue defined as transmit queue. Used when

sending data from CRDEV2 to SU35E17.
CRDEV2.DEAD.LETTER.QUEUE Local Queue Local queue defined as the system dead letter queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 32

Object Name Object Type Description
Message is placed on the queue when it is undeliverable.

DLSS.INIT Local Queue Queue used as an initiation queue for the Loan application
DLSS.FROM.EAI.LOAN Local Queue Local queue used to receive data as input for Loan

application
CRDEV2.SU35E16 Channel Sender Channel. Used to send messages to SU35E16
CRDEV2.SU35E17 Channel Sender Channel. Used to send messages to SU35E17
SU35E16.CRDEV2 Channel Receiver Channel used to receive messages from

SU35E16
SU35E17.CRDEV2 Channel Receiver Channel used to receive messages from

SU35E17
DLSS.LOAN.APP Process Process defined for Loan Application. This is the process

which gets triggered when a message arrives on the
DLSS.FROM.EAI.LOAN queue.

TRIGGER.CHANNEL Process Process defined to run the sender channel

3.3.4 DLSS Test Scenario Inputs
The test data must be in a specific format. From the initial entry on the WebSphere Server through MQSI
and onto the adapter, each component is expecting the data a certain way. The data format is as follows:

Input file layout with social security number 252494544

BAA 0611200115390000LO0101000000000 LO0101
DAA 06112001153900000001000000000
DCN0001
2524945440002
252001
DZZ 06112001153900000001000000001
TZZ 0611200115390000LO0101000000003 LO0101

Input file layout with social security number 402273152

BAA 0611200115390000LO0101000000000 LO0101
DAA 06112001153900000001000000000
DCN0001
402273152
0002252001
DZZ 06112001153900000001000000001
TZZ 0611200115390000LO0101000000003 LO0101

Input file layout with social security number 366821582

BAA 0611200115390000LO0101000000000 LO0101
DAA 06112001153900000001000000000
DCN0001
3668215820002
252001
DZZ 06112001153900000001000000001
TZZ 0611200115390000LO0101000000003 LO0101

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 33

3.3.5 DLSS Test Scenario Expected Results
The acceptance criteria of the test will be as follows:

• The generation of a report with output data as shown above or a message stating no output was
available.

• The display of the report results via the browser is identical to the DLSS information retrieved
directly from the Oracle Rdb database as shown in the expected results above.

The expected results flow is as follows. The input record passed to the DLSS loan application is a request
for payoff information. The loan application will create an output file consisting of payoff balances. If a
file does not appear after 5 minutes of initiating the programs, a message of “no data” is passed back to
the front-end. Otherwise, the expected data results are passed back to the calling application.

Output file layout with social security number 252494544

DCN0001
252494544S96G0154410125249454405262001000000000720000033194200000322827000000
09115000000000000000000000009171997 02252001RP02252001082500T001544001

DCN0002
252494544S97G0154410125249454405262001000000000720000033194400000322829000000
09115000000000000000000000009171997 02252001RP02252001082500T001544001

DCN0003
252494544S98G0154410125249454405262001000000000240000011064300000107605000000
03038000000000000000000000009171997 02252001RP02252001082500T001544001

Output file layout with social security number 402273152

DCN0001
402273152S99G8888700140227315204302001000000001330000059647000000595402000000
01068000000000000000000000003311999 08052000RP08052000081900T088887005

Output file layout with social security number 366821582

DCN0001
366821582S00G0232700136682158205202001000000000360000016469900000161264000000
03435000000000000000000000006212000 03182001RP03182001081900T002327001

DCN0002
366821582S95G0232710136682158205202001000000000960000043609600000426935000000
09161000000000000000000000004281995 03182001RP03182001082500T002327001

DCN0003
366821582S98G0232700236682158205202001000000000100000005317500000052066000000
01109000000000000000000000008181998 03182001RP03182001081900T002327001

DCN0004
366821582S99G0232700136682158205202001000000000440000020429600000200036000000
04260000000000000000000000006212000 03182001RP03182001081900T002327001

DCN0005
366821582U00G0232700136682158205202001000000000090000004428400000043359000000
00925000000000000000000000006212000 03182001RP03182001081900T002327002

• This DLSS test scenario was executed by the Release 1 EAI Core team and the expected results were
received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 34

3.4 EAI Component Test for NSLDS – Batch
The NSLDS system serves as a data repository for all loan application data within SFA. The EAI
enablement of the NSLDS system will allow applications to query the NSLDS system for real-time
results, as well as provide the functionality to execute batch processes using MQSeries messaging as the
transport mechanism of data from an external system to NSLDS.

3.4.1 NSLDS – Batch Test Scenario Description
This test will demonstrate the functionality of the MQSeries messaging infrastructure between the test
application and the NSLDS mainframe system, the use of a MQSeries Integrator Message flow, and the
use of MQSeries adapters written for the NSLDS system.

The Pell Grant request application is used for the EAI NSLDS Batch core test. In this test scenario, an
initial control file is sent through the SFA EAI Core architecture that defines the number of records that
will be sent to execute the batch job. Following the control record, a data record is sent which contains
the application data to be processed. Once all messages are received the MQ Adapters initiate the batch
processing on the NSLDS system. The output of the sample batch program is an output file of invalid
Pell Grant records, which are returned to the test application and displayed.

The control record is transformed through MQSI, which determines the message type, control or data
records. After transformation, the message is sent to NSLDS Batch, the target system, where an adapter
will read from the queue and output the data to a flat file. The flat file is input to an existing NLSDS
Batch job ARB6200 that reads in the Pell Grant request records and processes the records through
numerous application edits. The Pell Grant request records that fail an edit get written out to a flat file.
The second MQ adapter puts the messages on the queue to be sent back to the originating system
displaying the error file.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 35

3.4.2 NSLDS – Batch Test Scenario Detailed Design Description

The application to be used for the EAI NSLDS Batch core test is the Pell Grant request.

1. A data file, consisting of control and data records, is sent from the WebSphere Application Server
(WAS) to the EAI bus. (Shown by 1 & 2 in diagram above.)

2. In the MQSI message flow, the message will be transformed by evaluating the message data, control
or data records. (Shown by box in between (2) and (3) above.)

3. The message will then be sent to the NSLDS Batch system where an adapter will read from the queue
and output the data to a PELL flat file that can serve as input to an existing NSLDS Batch job
(ARB62000). (shown by 4, 5, 6 above)

4. An existing NSLDS Batch job reads the PELL file, processing each PELL record thru edit routines,
records with errors are written to an ERROR file. (shown by 7)

5. Another adapter will read the Error file, build an output message and put the message on the queue to
be sent back to the WebSphere Application Server. (Shown by 8, 9, 10 and 11).

NSLDS
MQSI

message
flow

NSLDS
Batch In
Adapter

OS/390 Batch
MQSeries

Trigger
MonitorEAI.FROM.WAS.

REQPELL

SU35E16 or SU35E17WAS.FROM.EAI.REPLYPELL

WAS.FROM.EAI.REPLYPELL

QL

QL

(1) (2) (3)
(5)

(11)

NSLDS
Request

NSLDS.FROM.EAI.REQPELL

Qmgr: NTT1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI NSLDS Data Flow

NSLDS OS/390
Environment

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.NSLDS.
REQPELL

(9)
(10)

(4)

QR

QR

QL
NSLDS.BATCH.INIT

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

NSLDS
Batch Out
Adapter

NSLDS
PELL
File

(6)

MQ
Control

File

NSLDS
Load PELL
Data Job

(7)

(8)
NSLDS

Error File

QR

QL

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 36

Files

Files used on the NSLDS system.

File Specification Function / Description
MQADM1.A.JCLLIB(CMPJCL02) Job to compile Adapter programs: NSBATCH1 and NSBATCH2
MQADM1.A.JCLLIB(JOBCARD) Jobcard definition executed by Trigger monitor
MQADM1.A.JCLLIB(MQCKTIBA) Trigger monitor job, submitted once and continues to run in the background

and executes the batch process when notified by the initiation queue that a
message has arrived on the queue

MQADM1.A.JCLLIB(MQCKTIEN) Stop the Trigger monitor from running in the background
MQADM1.A.PROCLIB(PELL) The proc for the EAI NSLDS batch process
MQADM1.A.PROCLIB(PRB62000) The proc for the existing NSLDS batch process
MQADM1.A.SRCLIB(CKTIBAT2) Source for Trigger monitor process
MQADM1.A.SRCLIB(CKTIEND) Source for Trigger monitor end process
MQADM1.A.SRCLIB(NSBATCH1) Source for first NSLDS batch adapter – reads from inbound queue
MQADM1.A.SRCLIB(NSBATCH2) Source for second NSLDS batch adapter – writes to outbound queue
MQM.V5R2M0.* Contains MQSeries installed product libraries (sample programs,

copybooks etc)
MQADM2.PELLNS1.FILE Input File to PELL Load process
MQADM2.CNTLNS1.FILE Control file created by NSBATCH1
MQADM2.ERROR.FILE Error file created by PELL Load process
MQADM2.ERROR.FILE Error file input to NSBATCH2
MQADM2.CNTL.FILE Control file input to NSBATCH2

Adapters

The EAI Core validation of the NSLDS batch functionality required the development of custom adapters
to execute a batch process on NSLDS. The adapters developed were titles to reflect the NSLDS system
and provide the functionality to build an input file, and process the NSLDS batch job, and then send an
output file back to the calling application.

There are 2 adapters on the NSLDS system – NSLDS Batch. NSBATCH1 and NSBATCH2 are Cobol
programs. The NSBATCH1 adapter reads messages from a MQSeries queue and writes the messages to a
file. The NSBATCH2 adapter reads data from a file and puts the data as a message to a MQSeries queue.

NSBATCH1: This program reads messages off an inbound queue, parses the messages to extract PELL
records and writes the PELL records to a flat file.

ARB62000: Executes Procedure: ARB62000 This is an existing multi-step process that does edit checks
against the PELL data and creates a flat file of exception/error records for those Pell records that fail the
edits.

NSBATCH2: This program reads in the exception/error file created in ARB62000 and builds outbound
messages stringing multiple exception/error records and puts the messages to the outbound reply queue.

OS390 Batch Trigger Monitor

The Trigger Monitor allows a batch application process to be submitted automatically when a message
arrives on an inbound application queue.

When the Pell message arrives from the test application the Queue manager, NTT1 puts the message to
the inbound application queue, NSLDS.FROM.EAI.REQPELL.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 37

Since the inbound queue is defined for triggering ‘first’Y the Queue Manager will put the data defined in
the Process definition: NSLDS.PELL.PROCESS as a message to the intiation queue,
NSLDS.BATCH.INIT, when the first message arrives in the queue.

The Batch Trigger Monitor monitors the initiation queue and when a message arrives the Batch Trigger
monitor executes the batch process and supplies the queue manager name and queue name to the adapter,
NSBATCH1.

Process Definition supplies the following,

1. proc stmt to be applied to the jobcard info

2. placeholders for the queue manager to put the queue manager name and name of the application
queue

Inbound queue defined for triggering,

1. Tells the queue manager to trigger a process

2. Supplies the name of the process definition to the queue manager

To run the developed test programs,

In the NSLDS Test TSO environment

 Edit: MQADM1.A.JCLLIB(MQCKTIBA)

 Submit

This will submit a job: MQCKTIBA (Batch Trigger Monitor) that will continue to run in the
background and execute the NSLDS Batch process as explained above.

NSBATCH1

One control message is sent from WAS with each PELL file. The control message contains information
to tell the program NSBATCH1 how to process the PELL records off the inbound queue.

CM-MSG-CNT – tells how many data messages to process.

CM-MAXMSG-LEN – tells the maximum size of a message. The application knows based on this
value at what offset to stop processing data from the message buffer.

CM-TOTAL-REC-CNT – tells when to stop parsing PELL records from all messages.

CM-LRECL – tells the length of the records to be parsed.

NSBATCH1 performs an initial read to get the first message, i.e. the control message. Using the values
from the control message, the adapter pulls the messages from the inbound queue until the msg-count
equals CM-MSG-CNT. For each message, the adapter parses the PELL records from the message for a
length of CM-LRECL and writes the records to the PELL output file until CM-TOTAL-REC-CNT or
CM-MAXMSG-LEN is reached.

NSBATCH1 writes out the control message to a control file to be used by the NSBATCH2 program.

Inputs: The program expects 2 messages as input,

1) Control message:

Record length: 177 bytes character format
Purpose of input parameter is to tell the adapter,
1. Number of data messages
2. Max data message length

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 38

3. Number of records in data message
4. Length of data records

2) Data message

Pell Grant request records
Record length: 300 bytes character format

Outputs: A flat file is generated as output. It’s a file of Pell request records that failed the required edits.

NSBATCH2

The control file created in NSBATCH1 contains information to tell the program NSBATCH2 how to
build the messages for the put to the outbound queue.

CM-MAXMSG-LEN – tells when to stop reading error records and stringing the record to out an
outbound message.

CM-LRECL – tells the length of the records to be strung together

NSBATCH2 reads the control file once (only one record) and moves values to Working Storage. The
program then reads the error file and moves each record out to the outbound message buffer by the length
of CM-LRECL until CM-MAXMSG-LEN or end-of-file condition on the Error file. On completion of all
record processing the message are put to the outbound replyto queue.

Prior to using the NSLDS batch adapters, NSBATCH1 and NSBATCH2, will need to be compiled. The
following steps should be executed to perform the compilation:

MQADM2.A.JCLLIB(CMPJCL02) specify which program needs be compiled.

Inputs: The program expects 1 file as input.

File description: Errors generated from processing Pell requests through the existing NSLDS
batch job: ARB62000.
The filename is limited to a maximum length of 109 characters.
The purpose of input file is to send back Pell requests that are in error back to the test application.

Outputs: Message is written to a MQSeries queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 39

MQSI

The MQSI nodes and their function are documented below.

Node Name Node Type Function
NSLDS PELL file transfer
process

MQInput Read from input queue

Verify PELL record Filter Filter out control message to transform.
Non- control messages MQOutput Write to queue if message is not a control message.
Unkown filter error MQOutput Write to replyto queue if unknown filter error
Build PELL Output Message Compute Take XML as input and create MRM.

Append required data fields to message
Set data fields to default values

Build Error Message Compute Build error message for invalid PELL record
Error Reply MQReply Put error message on replyto queue
NSLDS Queue MQOutput Put message on queue for delivery to NSLDS
Trace on Input Trace Failure on queue input goes to trace node
Trace on Build Trace Failure to build message goes to trace node

3.4.3 NSLDS - Batch Test Scenario Dependencies
The following defines the dependencies and resource requirements for a successful NSLDS Batch
test.

• MQSeries running on logically referred to as SU35E5, SU35E16 or SU35E17, and NTT1

• MQSI must be running on either logically referred to as SU35E16 or SU35E17.

Test Data

The NSLDS Batch Pell Request Application expects two (2) input records. The first record is a
Control Message, which defines the number of records to expect, and the second record is the
actual input data. The control record has the following format,

Detailed Record Layout/ Control Record:

01 NSLDS-CNTL-AREA.
03 CM-MSG-CNT PIC X(4).
03 CM-MAXMSG-LEN PIC X(9).
03 CM-TOTAL-REC-CNT PIC X(8).
03 CM-LRECL PIC X(4).
03 CM-NAME-FILE-IN PIC X(48).
03 CM-NAME-FILE-OUT PIC X(48).
03 CM-NAME-JOB-FILE PIC X(48).
03 CM-NAME-JOB-MEMBER PIC X(8).

Following the control message is is the Pell record. The Pell input record and ERROR output
records are treated as unformatted data. The Pell record length equals 300 bytes (spaces are not
visible) and the last characters at the end of record are ‘2001’.

The message queue does not manipulate the individual fields and only defines the field at the
record level.

The following are the record structures for the Pell and error records,

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 40

01 PELL-RECORD.
03 PIC X(300).

01 ERROR-RECORD.
03 PIC X(109).

PELL Record:

01 NSLDS-PELL-REC.
 03 PE-CURR-SSN PIC X(9).
 03 PE-DOB PIC X(8).
 03 PE-FNAME PIC X(12).
 03 PE-RPTING-OPEID PIC X(8).
 03 PE-ATTENDING-OPEID PIC X(8).
 03 PE-NEW-CURR-SSN PIC X(9).
 03 PE-NEW-DOB PIC X(8).
 03 PE-NEW-FNAME-CD PIC X(12).
PE-NEW-RPTING-OPEID PIC X(8).
03 PE-NEW-ATTENDING-OPEID PIC X(8).
 03 PE-LNAME PIC X(35).
 03 PE-MI PIC X(1).
 03 PE-ORIG-SSN PIC X(9).
 03 PE-NAME-CD PIC X(2).
 03 PE-PELL-BATCH-CD PIC X(26).
 03 PE-DISBURS-REF-NUM PIC X(2).
 03 PE-FILLER PIC X(4).
 03 PE-EXP-FAMILY-CONTR PIC X(5).
 03 PE-SEC-FAMILY-CONTR PIC X(5).
 03 PE-ACC-SEC-EFC-USED-CD PIC X(1).
 03 PE-ACC-COST-ATTEND PIC X(7).
 03 PE-HIGHEST-COST-ATTEND PIC X(7).
 03 PE-SCHED-FED-PELL-AMT PIC X(7).
 03 PE-ACC-AMT-PAID-TO-DT PIC X(7).
 03 PE-ACC-ORIGIN-AMT PIC X(7).
 03 PE-ACC-FIRST-ENROLL PIC X(8).
 03 PE-ACC-ACAD-CALEN PIC X(1).
 03 PE-ACC-VERIF-STAT-CD PIC X(1).
 03 PE-ACC-PMT-METHOD PIC X(1).
 03 PE-ACC-ENROLL-STATUS-CD PIC X(1).
 03 PE-HIGH-ACC-ENROLL-STAT PIC X(1).
 03 PE-ACC-CR-HRS-CR-COMPL PIC X(4).
 03 PE-ACC-HRS-CR-SCH-ACAD PIC X(4).
 03 PE-ACC-WEEKS-ENROLL PIC X(2).
 03 PE-ACC-WEEKS-IN-PGM PIC X(2).
 03 PE-HIGH-ACC-INCAR-REC-CD PIC X(1).
 03 PE-TOTL-ELIG-USED PIC X(5).
 03 PE-SEG-ELIG-USED PIC X(5).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 41

 03 PE-SEG-POT-OVRAW-FLAG PIC X(1).
 03 PE-SEG-POT-OVRAW-DIS PIC X(7).
 03 PE-RECVD-DT PIC X(8).
 03 PE-DISBURS-DT PIC X(8).
 03 PE-UNUSED PIC X(18).
 03 PE-ACTION-CD PIC X(1).
 03 PE-PELL-AWARD-YR PIC X(4).

Cobol Application Specifics

Prior to executing the test the NSLDS batch adapters must first be compiled. To compile the
NSBATCH1 and NSBATCH2 programs,

In the NSLDS Test TSO environment

edit MQADM1.A.JCLLIB(CMPJCL02)

submit

MQSeries Objects Used

The MQSI nodes and their function are documented below.

Object Name Object Type Description
SU35E16 Local Queue Local queue defined as transmit queue. Used when

sending data from NTT1 to SU35E16.
SU35E17 Local Queue Local queue defined as transmit queue. Used when

sending data from NTT1 to SU35E17.
NSLDS.DEAD.LETTER.QUEUE Local Queue Local queue defined as the system dead letter queue.

Message is placed on the queue when it is undeliverable.
NSLDS.BATCH.INIT Local Queue Queue used as an initiation queue for the PELL request

application
NSLDS.FROM.EAI.REQPELL Local Queue Local queue used to receive data as input for PELL request

application
NTT1.SU35E16 Channel Sender Channel. Used to send messages to SU35E16
NTT1.SU35E17 Channel Sender Channel. Used to send messages to SU35E17
SU35E16.NTT1 Channel Receiver Channel used to receive messages from

SU35E16
SU35E17.NTT1 Channel Receiver Channel used to receive messages from

SU35E17
NSLDS.PELL.PROCESS Process Process defined for PELL request application. This is the

process which gets triggered when a message arrives on
the NSLDS.FROM.EAI.REQPELL queue.

TRIGGER.CHANNEL Process Process defined to run the sender channel

3.4.4 NSLDS – Batch Test Scenario Inputs
The test data must be in a specific format. From the initial entry on the WebSphere Server
through MQSI and onto the adapter, each component is expecting the data a certain way. The
data format is as follows.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE BUILD AND TEST REPORT
SECTION 3: EAI COMPONENT TESTS

JULY 20, 2001 54 – 54.1.5 42

• Following is the test 1 input XML file. This XML document references the file that is to be
transferred.

nsinp1.xml
<?xml version = “1.0”?>
<strFileName>/www/dev/eai/input/nslds/nsinp1.txt</ strFileName >

This is the contents of the file referenced above.

Pell record input one: 444444X4419501326MYRTLE
0014890000148900556221005 AL 0014890000148900
A556221Y01AL#D20000010021999030200002301
X100000100X040017X50017Y500000000000000000000000199913016Q198010109157
829X00X0000Y00P0000000199X050119991301 A2001

• Following is the test 2 input XML file. This XML document references the file which is to
be transferred.

nsinp2.xml
<?xml version = “1.0”?>

<strFileName>/www/dev/eai/input/nslds/nsinp2.txt</ strFileName >

Pell record input two:

44444442719501126MYRTLE 0014890000148900
HILLBILLY
A556221001AL#D20000010021999030200002301
110000010000S00170500170500000000000000000000000000101016N211010001007
889N0550004444P00000001999050119991201 A2001

3.4.5 NSLDS - Batch Test Scenario Expected Results
The resulting response is an unformatted string of data that reflects the error records submitted as
input. The following is the message format definition for the results.

Response message definition:

Error Record:

01 NSLDS-ERROR-REC.
 03 ER-CURR-SSN PIC X(9).
 03 ER-DOB PIC X(8).
 03 ER-FNAME PIC X(12).
 03 ER-RPTING-OPEID PIC X(8).
 03 ER-ATTENDING-OPEID PIC X(8).
 03 ER-ORIG-SSN PIC X(9).
 03 ER-LNAME-CODE PIC X(2).
 03 ER-BATCH-NUM PIC X(26).
 03 ER-ERROR-CODE PIC X(5).
 03 ER-FILLER PIC X(8).
 03 ER-ACTION-CODE PIC X(1).
 03 ER-PELL-AWARD-YR PIC X(4).
 03 ER-SORT-SEQ-FIELD PIC X(9).

• This NSLDS Batch test scenario was executed by the Release 1 EAI Core team and the
expected results were received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 43

3.5 EAI Component Test for NSLDS – Cool:Gen
The NSLDS system provides the capability to interface with the NSLDS web server and allow
users to perform queries against the NSLDS mainframe system. This capability is provided via
the Cool:Gen product and its use of a COM proxy server. The implementation of the EAI Bus to
provide access from the NSLDS we server to the NSLDS mainframe system will provide
messaging capabilities directly from the NSLDS web server to the NSLDS mainframe system
using the EAI Bus instead of the Cool:Gen Com proxy server and SNA to TCP/IP conversion for
each request.

3.5.1 NSLDS – Cool:Gen Test Scenario Description
The NSLDS Cool:Gen test demonstrates the functionality of using Cool:Gen with IBM’s
MQSeries messaging to perform the following:

• Demonstrate the capability of the Cool:Gen adapters, residing on both the NSLDS web server
and the NSLDS mainframe, and the Cool:Gen COM Proxy adapter on the NSLDS Web
Server to communicate with the Cool:Gen Server adapter, on the NSLDS mainframe, via
MQSeries messaging.

• Demonstrate the interoperability of MQSeries messaging to route Cool:Gen messages across
disparate systems, the NSLDS NT web server and the NSLDS IBM 9672 Mainframe.

• Demonstrate the capability of the MQSeries CICS trigger monitor and the Cool:Gen
Transaction Dispatcher for CICS (TDC) to automatically invoke Cool:Gen developed CICS
transactions. The trigger monitor is shown in step 5 in the diagram below.

3.5.2 NSLDS – Cool:Gen Test Scenario Detailed Design Description
The sample representative NSLDS transaction used for the EAI Cool:Gen sample function test is
the NSLDS Organization contact list inquiry (WB16).

The NSLDS message flow uses MQSeries messaging to connect the NSLDS web server, running
Microsoft Internet Information Server (MS IIS), to the NSLDS OS/390 Mainframe via the EAI
Bus Servers. The Cool:Gen COM Proxy residing on the NSLDS web server initiates the
requested transaction to the Cool:Gen Server. The MQ Cool:Gen adapter on the NSLDS web
server puts the message data into a message queue and the message is routed to the NSLDS
mainframe system for processing. As soon as the message arrives on the NSLDS mainframe
input queue, the CICS trigger monitor starts the Transaction Dispatcher for CICS (TDC)
component of Cool:Gen on the NSLDS OS/390 mainframe. The TDC starts the WB16
transaction to process the request. This connectivity demonstrates the capability of the MQSeries
CICS trigger monitor and the Cool:Gen TDC to automatically start and execute a test transaction
(WB16) when a message request arrives onto the input queue on the NSLDS System partition
where the queue manager resides. The following define the detailed steps in executing the
NSLDS transaction sample test:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 44

1) A Cool:Gen COM Proxy request message, consisting of an Organization Type, Org Code and

Org Sub code, is put onto the Remote Queue EAI.TO.NSLDS.WB16 from the NSLDS when
server queue manager (T048DEV1).

2) The message is routed through the EAI BUS Servers – queue manager (logically referred to
as SU35E16 or SU35E17) using the EAI.TO.NSLDS.WB16 message queue.

3) The Cool:Gen request message arrives on the EAI.TO.NSLDS.WB16 message queue on the

NSLDS OS/390 System queue manager (NTT1). The EAI.TO.NSLDS.WB16 queue is
defined and set for triggering.

4) For each message arrival, the queue manager (NTT1) creates a trigger message based on the

information defined on the PROCESS definition and puts the data into the
NTT1.CICSDEVT.INITQ.

5) The CICS trigger monitor in the CICS region, CICSNSLD, retrieves the trigger message,

examines the message contents and initiates the defined Cool:Gen Transaction Dispatcher for
CICS (TDC), passing the entire trigger message to the program.

6) The TDC, which opens the application queue, gets the request message.

7) The program WB1612DS is invoked which accesses the DB2 databases and formats the reply

to be sent back to the COM Proxy on the NSLDS mainframe system. Communication
between MQSeries and the CICS program WB1612DS is done thru the CICS COMMAREA.

8) The formatted reply message is put into the NSLDS.TO.EAI.REPLYWB16 queue.

DB2

EAI.TO.NSLDS.WB16 EAI.TO.NSLDS.WB16

NSLDS.TO.EAI.REPLYWB16NSLDS.TO.EAI.REPLYWB16NSLDS.TO.EAI.REPLYWB16

QL

QR

QR

(1) (2)

(8)

(3)

(6)

(4)

(7)

NSLDS
COOL:

Gen
COM
Proxy

EAI.TO.NSLDS.WB16

Qmgr: NTT1

QL

Qmgr:
T048DEV1

Qmgr:
SU35E16/
SU35E17

EAI NSLDS COOL:GEN
 Data Flow

NSLDS OS/390
Environment

MS Internet Information
Server EAI BUS SERVER

(5)

QR

QR

(9)

COOL:GEN
 TDC
(TITD)

CICS CKTI

CICSNSLD

WB16

NTT1.CICSDEVT.INITQ

(10)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 45

9) The message is routed through the EAI BUS Servers – queue manager (logically referred to

as SU35E16 or SU35E17) using the NSLDS.TO.EAI.REPLYWB16 queue.

10) The reply message arrives at the queue manager – T048DEV1 on the NSLDS web server.

The Cool:Gen COM Proxy gets the reply message from the queue and display the result.

Files

Not applicable with this test.

Adapters

On the NSLDS web server and the NSLDS mainframe the developed MQ Cool:Gen Adapters
were used. The NSLDS applications were developed using Cool:Gen v5.1. Both the Cool:Gen
COM Proxy and Server are generated on the NSLDS web server. The COM Proxy executes on
the NSLDS web server. The Cool:Gen Server is built, bound and deployed to the NSLDS
OS/390 platform.

The Cool:Gen development tools were used to create the NSLDS Client (COM Proxy) adapter,
the server manager name, the queue manager name, the queue name, the REPLYTO queue name
and the client type. The following are screens from the Cool:Gen configuration. The first screen
defines the MQSeries queue manager, and queues to the Cool:Gen application. The second
screen maps the Cool:Gen CICS transaction to MQSeries for execution during operation of the
application.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 46

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 47

MQSI

Not applicable with this test; data transformation is not required.

3.5.3 NSLDS – Cool:Gen Test Scenario Dependencies
The following defines the dependencies and resource requirements for a successful NSLDS Batch
test.

• MQSeries running on logically referred to as SU35E5, SU35E16 or SU35E17, and NTT1

• MQSI must be running on either logically referred to as SU35E16 or SU35E17.

• CICS 4.1 using the CICS Region CICSDEVT

• Cool:Gen MQSeries Transaction Dispatcher for CICS

• An IBM DB2 database on CICSDEVT must be available.

Test Data

The test data must be in a specific format, as defined in the Cool:Gen application. From the
initial entry on the WebSphere Server through MQSI and onto the adapter, each component is
expecting the data a certain way. The data format is defined in the following section.

3.5.4 NSLDS – Cool:Gen Test Scenario Inputs
The following data and format is required in the message request from the NSLDS web server.

• Organization Type:

SCH School (6 + 4 digits)
GA Guarantee Agency (3 digits)
LEN Lender (6 + 4 digits)
EDR Education Region (2 digits)
FDLP Servicer Branch (1 digit)
LBS Lender Branch Service (6 + 4 digits)

• Organization Code: Organization Code (6 + 4 digits)

• Organization Sub Code: School or Lender

3.5.5 NSLDS – Cool:Gen Test Scenario Expected Results
A message will be initiated from the Websphere Application Server and be routed through the
EAI Bus. The message will be received via MQSeries on the NSLDS mainframe where the
message will be extracted from the queue. The trigger monitor will pass the message data to the
CICS TDC to execute the WB16 transaction. The results returned from the transactions will be
placed on a message queue on the NSLDS mainframe and routed back to the NSLDS web server
for display.

The Cool:Gen transaction dispatcher for CICS (TDC) starts the WB16 transaction, passing the
request message from MQSeries via the CICS DFHCOMMAREA for processing. The result of
the request is a formatted reply, which is wrapped in the MQ message and sent back via a queue

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 48

called NSLDS.TO.EAI REPLYWB16. The result is displayed by the Cool:Gen COM Proxy and
it contains the organization name, code, type, status, address, city, state, and zip code.

Below is a result of a test with valid input data.

NSLDS ORG CONTACT
LIST FIELDS

VALUE

ORG_TYPE SCH
ORG_CODE 001002
ORG_SUB_CODE 00
ORG_NAME ALABAMA AGRICULTURE & MECHANICAL UNIVERSITY
ORG_STREET_ADDRESS 4900 MERIDIAN STREET NW
ORG_CITY NORMAL
ORG_STATE ALABAMA
ORG_ZIP_CODE 35762
ORG_COUNTRY U.S.A.

• This NSLDS Cool:Gen test scenario was executed by the Release 1 EAI Core team and the
expected results were received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 49

The following picture depicts the results of the execution of the sample transaction on the NSLDS
system using the NSLDS web server and the SFA EAI Core Architecture.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 50

3.6 EAI Component Test for PEPS
The PEPS system contains data records to support the Post Secondary Education Processing
System. It is a custom developed system built upon the Oracle Forms COTS product. The EAI
enablement of the PEPS system will provide the capability to execute real-time transactions
against the PEPS database.

3.6.1 PEPS Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure to the PEPS system is
based on a School Eligibility request. The PEPS development team provided access to the Oracle
database with one stored procedure that demonstrates this typical business process. A MQSeries
Java adapter has been developed to connect the PEPS system to the EAI Bus and provides the
capability to send a request to the PEPS system to determine the eligibility of a school.

3.6.2 PEPS Test Scenario Detailed Design Description
The sample function selected for the PEPS system validates the ability of a user to enter a School
ID as input data from the test application. The school ID input data is put into an MQSeries
message and routed to the EAI Bus for transformation by MQSI. The input data is in XML
format. MQSI performs the defined message flow transformation and routes the transformed
message data to the target system, PEPS. Upon receipt by the PEPS server the custom developed
MQ Adapter retrieves the message from the queue, executes the Oracle stored procedure, which
performs a lookup in the PEPS Oracle database, and returns the school eligibility status to the test
application for display.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 51

The figure below describes the message flow through the PEPS custom adapter.

The flow of a MQSeries Request type message through the EAI PEPS Request Design is as
follows:

1) A PEPS MQSeries Request type message is put to the Cluster Queue
EAI.FROM.WAS.GETSCHOOL from the WAS box.

2) The MQSeries Queue Manager (logically referred to as SU35E5) on the WAS moves the
message to the Local Queue EAI.FROM.WAS.GETSCHOOL.

3) The message is pulled from the EAI.FROM.WAS.GETSCHOOL and processed through the
PEPS MQSI Message Flow.

4) The output message from the PEPS MQSI Message Flow is put to the Remote Queue
EAI.TO.PEPS.GETSCHOOL.

5) The MQSeries Queue Manager (PEPSK570) on PEPS puts a trigger message on the
initiation queue: PEPS.INIT.

6) The MQSeries Trigger Monitor application pulls the trigger message from the PEPS.INIT
queue.

7) The MQSeries Trigger Monitor application starts the PEPS MQ Wrapper/Adapter
application.

PEPS
MQSI

message
flow

PEPS
Oracle

DB

PEPS MQ
Wrapper/
Adapter:

 EAIPEWSE
MQSeries

Trigger
Monitor

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

EAI.FROM.WAS.
GETSCHOOL

SU35E16 or SU35E17WAS.FROM.EAI.
REPLYSCHOOLWAS.FROM.EAI.

REPLYSCHOOL

QL

QL

(1) (2)
(3)

(4)

(7)

(5)

(10)

PEPS
Request

PEPS.FROM.EAI.
GETSCHOOL

Qmgr: PEPSK570

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI PEPS Data Flow

PEPS HP-UX
Environment

PEPS
Stored

Procedure

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.PEPS.
GETSCHOOL

(8)

(9)

(6)

QR

QR

QL
PEPS.INIT

QR

QL

(11)(12)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 52

8) The PEPS MQ Wrapper/Adapter pulls the message from the
PEPS.FROM.EAI.GETSCHOOL.

9) The PEPS MQ Wrapper/Adapter application calls the PEPS API to pull data from the PEPS
Oracle database and pass back the data retrieved.

10) The PEPS MQ Wrapper/Adapter puts the PEPS message into the transmission Queue for the
logically referred to as SU35E16 or SU35E17.

11) The MQSeries Queue Manager (PEPSK570) on PEPS moves the reply message to the Queue
WAS.FROM.EAI.REPLYSCHOOL.

12) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the reply
message to the Local Queue WAS.FROM.EAI.REPLYSCHOOL.

Files

The following input files have been defined on the WAS server for access by the EAI Core test
application in execution of this test scenario:

File Specification Function

Peinp1.xml Returns the eligibility status of the school
Peinp2.xml Returns the eligibility status of the school
Peinp3.xml Returns the eligibility status of the school
Peinvld1.xml Invalid school ID, returns an error

Adapters

A custom MQ Adapter, written in Java, was developed for the PEPS system. The adapter is
called MQPEPS.1.1.0.8.

MQSI

The MQSI nodes and their function are documented below.

Node Type Description/Function
Input Message Queue From
WAS

MQInput Gets message from queue
EAI.FROM.WAS.GETSCHOOL

Trace1 Trace Traces flow for debug
Determine Request Type Filter Checks if requesttype = 1

If tue goto format SQL request
If false goto format Oracle call request

Format SQL Request Compute Builds message based on the input data and the
required parameters for the stored procedure

Output Trace Trace Traces flow for debug
Format Oracle Call Request Compute Builds message per the format expected by the

PEPS stored procedure
Output Queue to PEPS MQOutput Puts message to queue

EAI.TO.PEPS.GETSCHOOL

3.6.3 PEPS Test Scenario Dependencies
To execute the PEPS System test scenario the following dependencies must be met,

• MQSeries Messaging and queue managers on each of the following systems operational,
logically referred to as SU35E5, SU35E16 or SU35E17, and PEPS.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 53

• MQSI must be operational on either logically referred to as SU35E16 or SU35E17.

• Valid school Ids defined in the PEPS database and a tested Oracle stored procedure to query
the PEPS database to extract the database data.

3.6.4 PEPS Test Scenario Inputs
The PEPS test scenario included 4 test executions, three valid tests and one invalid test. The
results of each test are shown in Section 3.6.5.

Test Data

The test data must be in a specific format. From the initial entry on the WebSphere Server
through MQSI and onto the adapter, each component is expecting the data a certain way. The
data format is as follows.

Input file: peinp1.xml

<?xml version=1.0?>

<pepsRoot>

 <OPEID>00103300</OPEID>

</pepsRoot>

Input: peinp2.xml

<?xml version=1.0?>

<pepsRoot>

 <OPEID>00102000</OPEID>

</pepsRoot>

Input: peinp3.xml

<?xml version=1.0?>

<pepsRoot>

 <OPEID>00716400</OPEID>

</pepsRoot>

 Input: peinvld1.xml

<?xml version=1.0?>

<pepsRoot>

 <OPEID>00000000</OPEID>

</pepsRoot>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 54

3.6.5 PEPS Test Scenario Expected Results
The execution of this test scenario returns an XML document that identifies the returned school
information as defined in the PEPS Oracle database.

Corresponding Output for peinpl.xml input: Test Results of sendReceive PEPS Test Scenario

2oracle.jdbc.driver.OracleDriverjdbc:oracle:oci8:@pepsprodptl6200{call

P_GET_MQ_TEST_DATA(?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?)}4011200103300212null212null212null212null2
12null212null212null212null212null212null212null212null212null212null21
2null212null212null212null212null212null212null212null212null212null212
null212null212null291null291null291null291null212null212null212null22nu
ll212null212null291null212null0

0 00103300 1 Oakwood College 2 7000 Adventist Boulevard, Northwest 3
null 4 Huntsville 5 AL 6 35896 7 0001 8 null 9 null 10 null 11 089 12
04 13 04

14 Y 15 Y 16 C 17 2 18 06 19 QH 20 2 21 SACSCC 22 Certified 23
Certified 24 Not Cert 25 Certified 26 05 27 12 28 1999-07-28 00:00:00.0
29

1999-08-04 00:00:00.0 30 1999-08-25 00:00:00.0 31 2003-06-30 00:00:00.0
32 072095326 33 630366652 34 1998 35 15.30 36 FL 37 Y 38 null 39

001033

Corresponding Output for peinp2.xml: Test Results of sendReceive PEPS Test Scenario

2oracle.jdbc.driver.OracleDriverjdbc:oracle:oci8:@pepsprodptl6200{call

P_GET_MQ_TEST_DATA(?,?)}401120
0102000212null212null212null212null212null212null212null212null212null212null212null212null212nul
l212null212null212null212null212null212null212null212null212null212null212null212null212null212null
291null291null291null291null212null212null212null22null212null212null291null212null0

0 00102000 1 Jacksonville State University 2 700 Pelham Road, North 3 null 4 Jacksonville 5 AL 6 36265
7 1602 8 null 9 null 10 null 11 015 12 04 13 04

14 Y 15 Y 16 C 17 1 18 08 19 SH 20 5 21 SACSCC 22 Certified 23 Certified 24 Certified 25 Certified 26
05 27 12 28 1999-07-14 00:00:00.0 29

1999-08-02 00:00:00.0 30 1999-10-23 00:00:00.0 31 2003-09-30 00:00:00.0 32 079107165 33 636001099
34 1998 35 8.10 36 DU 37 Y 38 null 39

001020

Corresponding Output for peinp3.xml: Test Results of sendReceive PEPS Test Scenario

2oracle.jdbc.driver.OracleDriverjdbc:oracle:oci8:@pepsprodptl6200{call

P_GET_MQ_TEST_DATA(?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?)}4011200716400212null212null212null212null2
12null212null212null212null212null212null212null212null212null212null21
2null212null212null212null212null212null212null212null212null212null212

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 55

null212null212null291null291null291null291null212null212null212null22nu
ll212null212null291null212null0

0 00716400 1 Bryan College of Court Reporting 2 2333 Beverly Boulevard
3 null 4 Los Angeles 5 CA 6 90057 7 2209 8 null 9 null 10 null 11 037
12 09 13

09 14 Y 15 Y 16 C 17 3 18 11 19 QH 20 5 21 ACICS 22 Certified 23
Certified 24 Certified 25 Certified 26 49 27 12 28 1999-10-14
00:00:00.0 29

1997-07-10 00:00:00.0 30 1997-08-01 00:00:00.0 31 2001-06-30 00:00:00.0
32 078799343 33 952312992 34 1998 35 6.40 36 DU 37 Y 38 null 39

007164

Corresponding Output for peinvld1.xml: Test Results of sendReceivePEPS Test Scenario

2oracle.jdbc.driver.OracleDriverjdbc:oracle:oci8:@pepsprodptl6200{call

P_GET_MQ_TEST_DATA(?,
?,?,?,?,?,?,?,?,?,?,?,?,?,?)}4011200000000212null212null212null212null2
12null212null212null212null212null212null212null212null212null212null21
2null212null212null212null212null212null212null212null212null212null212
null212null212null291null291null291null291null212null212null212null22nu
ll212null212null291null212null0

0 00000000 1 null 2 null 3 null 4 null 5 null 6 null 7 null 8 null 9
null 10 null 11 null 12 null 13 null 14 null 15 null 16 null 17 null 18
null 19 null 20 null 21 null 22
null 23 null 24 null 25 null 26 null 27 null 28 null 29 null 30 null 31
null 32 null 33 null 34 null 35 null 36 null 37 null 38 null 39 null

• This PEPS test scenario was executed by the Release 1 EAI Core team and the expected
results were received and validated.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 56

4 EAI COMPONENT MIGRATION
The migration of the Release 1 EAI Core components as designed and developed are dependent
upon the following specific legacy system requirements, required licensing, and legacy system
owner approval for migrating to each legacy system production environment. For each legacy
system the system installation pre-requisites, the networking dependencies, and the required
configuration are defined.

It is recommended that a meeting be conducted with each legacy system owner, Modernization
Partner, and the SFA EAI Manager be conducted in advance of each system migration to review
the requirements, steps and access required to migrate the Release 1 EAI Core architecture
components into the production environments.

4.1 EAI Component Migration for bTrade

4.1.1 System Installation
The EAI Core components for the bTrade system require the following pre-requisites be installed
in advance of migrating the Release 1 EAI components onto the bTrade production system:

• HP/UX Version HP-UX hpdev1 B.11.00 U 9000/800 (tb)

• Java JDK HP-UX Java C.01.18.01 12/10/1999 12:48:46 dyo640

• The installation of the bTrade connectorAPI, provided by bTrade/NCS, as per the bTrade
connectorAPI program design specification document.

• The installation and configuration of Oracle 8.1 with the required JDBC support – this is a
bTrade application requirement.

• Validation of the bTrade connectorAPI operation and configuration for all required API
parameters and object states

• MQSeries Messaging Version 5.2 with MQ base Java support and the Product Extension
MA88

• IBM XML4J XML Parser 3.1.1

• MQRbTrade 1.1.0.5 – EAI Core Architecture bTrade MQ Adapter

• HP hardware capacity, i.e. CPU processor, RAM, etc, as required by the bTrade production
system and DASD requirements.

4.1.2 Networking
In order for MQSeries to communicate and exchange messages within the SFA EAI infrastructure
network connectivity tasks must be completed. First, determine what port the system will use for
the listener process. The default port is 1414. A determination must be made during installation
to verify that this port is available and not previously defined. Once the port has been decided
upon, contact the necessary networking personnel to request all firewalls, gateways and routers
between the VDC and the bTrade system be configured to include the IP protocol with telnet,
ping, and ftp capability.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 57

4.1.3 Configuration
There are two queues associated with the bTrade MQSeries Adapter. One, an inbound queue,
which clients can put requests for bTrade system processing and from which the bTrade
MQSeries Adapter will be triggered to perform the requests. The other, an outbound queue,
which the bTrade MQSeries Adapter will put data and status obtained from bTrade processing
and from which clients can be triggered on and or pull from.

Develop and install MQSeries start and stop scripts to provide for an orderly shutdown of the
system by the system administrator, and to provide the automatic startup of the MQSeries
messaging component upon system startup.

MQSeries Objects used on the development and test system are defined in Deliverable 54.1.3 –
EAI Technical Specifications Document Release 1. These objects will have to be reviewed and
may require modification based on the application requirements for enabling an application onto
the EAI Bus using the bTrade system.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 58

4.2 EAI Component Migration for CPS and NSLDS

4.2.1 System Installation
Virtual Data Center (VDC) personnel performed all OS/390 CPS Installations and
Configurations. The installation of the MQSeries Messaging software and required adapters,
MQSeries CICS DPL Bridge, MQSeries Batch Adapter, Trigger Monitor, will be performed by
CSC. Specifically, the installation will require MQSeries administrators for the MQSeries product
and the CICS systems support for the CICS DPL Bridge. These two components are provided
with the MQSeries software product delivered to SFA. The instructions to install these
components are provided in the MQSeries manuals, which have been provided in hard copy to
CSC.

Upon completion of the MQSeries adapters the adapters will need to be configured for each
application to support the OS/390 definitions required to execute the adapters. The definitions of
the specific adapter configurations are dependent upon the application requirements for enabling
the application on the OS/390 platform per the application EAI enablement requirements.

4.2.2 Networking
In order for MQSeries to communicate and exchange messages within the defined infrastructure
network connectivity tasks must be completed. First, determine what port the system will use for
the listener process. The default port is 1414. A determination must be made during installation
to verify that this port is available and not previously defined. Once the port has been decided
upon, contact the necessary networking personnel to request all firewalls, gateways and routers
between the VDC and the CPS system be configured to include the IP protocol with telnet, ping,
and ftp capability.

4.2.3 Configuration on the CPS System
The following tasks should be performed when performing the EAI configuration for CPS,

1) Install MQSeries Messaging V5.2 and the out of the box MQSeries CICS DPL bridge on the
CPS system.

2) Once the MQSeries installation is complete, the object definitions for CPS in the scripts
provided in Deliverable 54.1.3 should be used to configure the MQSeries environment. These
object definitions in the text script will need to be given to the MQSeries Administrators to
define.

3) Modify the script files on the Sun Solaris servers with new channel and queue definitions for
the CPS production system.

4) Setting up the CICS DPL Bridge to start automatically can be done out of the CICS
sequential terminal processing, the PLT startup or set on the queue object for the bridge to be
TRIGGER, TRIGTYPE(FIRST), APPLICID(CKBR) and specifying the AUTH and WAIT
parameters in the USERDATA field in the related process definition.

4.2.4 Configuration on the NSLDS System
The following tasks should be performed when performing the EAI configuration for NSLDS,

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 59

1) Install MQSeries Messaging V5.2 and the out of the box MQSeries Batch Adapter on the
NSLDS system.

2) Once the MQSeries installation is complete, the object definitions for NSLDS provided in
Deliverable 54.1.3 can be used to configure the MQSeries environment. These object
definitions in the text script will need to be given to the MQSeries Administrators to define.

3) Modify the script files on the Sun Solaris servers with new channel and queue definitions for
the NSLDS production system.

4) To set up the Batch Adapter and the Trigger monitor refer to Deliverable 54.1.3 – EAI
Technical Specifications Document Release 1.

4.2.5 MQ Object Definitions
The MQ Objects for the CPS and NSLDS systems are defined in Deliverable 54.1.3 – EAI
Technical Specifications Document Release 1. These object definitions used for the development
and test phase will need to be reviewed and may require modification based on the production
system configurations.

4.2.6 Other CPS and NSLDS Migration Considerations
The current installation of the MQSeries Messaging software for the CPS and NSLDS systems
was based on a temporary license. The migration to production for each of these systems will
require production MQSeries licenses that are based on usage and capacity. In addition, DASD
must be allocated for MQSeries operation. The applications requiring MQSeries on the CPS and
NSLDS systems must defines their application security requirements prior to migrating into the
production environment so access definitions can be updated in the RACF database.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 60

4.3 EAI Component Migration for DLSS

4.3.1 System Installation
The EAI configuration for the DLSS system requires the installation and configuration of
MQSeries for Compaq OpenVMS v2.2.1.1 (Note: Version 5.1 of MQSeries for OpenVMS was
released at the end of May, 2001).

The EAI Core Adapters developed for Release 1 were developed in ‘C’ and therefore the Compaq
OpenVMS C Compiler for Alpha Systems is necessary for the programs to be recompiled and
linked.

4.3.2 Networking
In order for MQSeries to communicate and exchange messages within the defined infrastructure
network connectivity tasks must be completed. First, determine what port the system will use for
the listener process. The default port is 1414. A determination must be made during installation
to verify that this port is available and not previously defined. Once the port has been decided
upon, contact the necessary networking personnel to request all firewalls, gateways and routers
between the VDC and the DLSS system be configured to include the IP protocol with telnet, ping,
and ftp capability.

4.3.3 Configuration
The following tasks should be performed when configuring the DLSS production system EAI
components,

1) Configure port 1414 (or any non-used port) for the listener process by creating the MQSeries
service with the UCX utility.

2) Modify the system startup and shutdown procedures to mimic what was done for MQSeries
on the OpenVMS test system. Specifically, start MQSeries and execute the command
procedure [mqm]start_mq_batch_jobs.com

3) Modify the script file EAI.TST with the necessary object names. Specifically, the channel
names and queue names for the production system.

4) Modify the script files (EAI.TST) on the Sun Solaris servers with new channel and queue
definitions for the production system.

5) Compile and link the adapter programs.

$CC / INCLUDE_DIRECTORY=MQS_INCLUDE MQPUT

$CC / INCLUDE_DIRECTORY=MQS_INCLUDE MQGET

$LINK MQPUT.OBJ, SYS$INPUT /OPTIONS <enter>

SYS$SHARE:MQM/SHARE

$LINK MQGET.OBJ, SYS$INPUT /OPTIONS <enter>

SYS$SHARE:MQM/SHARE

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 61

4.4 EAI Component Migration for NSLDS-Cool:Gen

4.4.1 System Installation
The current NSLDS development and run-time environments utilize the Cool:Gen product from
Computer associates. Cool:Gen is an Integrated Development Environment (IDE) tool for
developing software applications. Integration of MQSeries and Cool:Gen on the NSLDS system
requires the following products,

• MQSeries V5.2 for OS/390 – NSLDS mainframe

• MQSeries V5.1 for NT Server plus CSD 5 or higher – NSLDS Web Server

• Cool:Gen Version V5.1 Plus PTF’s applied – NSLDS mainframe

• CICS V4.1 – NSLDS mainframe

• OS/390 V2R8 or V2R10 – NSLDS mainframe

• Microsoft Windows NT Web Server – NSLDS Web Server

• Cool:Gen MQSeries Transaction Dispatcher for CICS (TDC) - NSLDS mainframe

The base components of TDC should be installed as part of the standard MVS install. The base
components must be defined to CICS in order for the components to be accessible. Additionally,
Virtual Storage Access Mechanism (VSAM) definitions will be necessary if the application
intends to use this option for temporary storage.

The MQSeries CICS Trigger Monitor (CKTI) must be installed and enabled.

CICS installation

The modules TIRMQTDC and, if used, TIRMQTDX must be in the DFHRPL concatenation. If
the COOL:Gen LOADLIB is not allocated to DFHRPL, copy TIRMQTDC from the Cool:Gen
LOADLIB to the DFHRPL library of your choice.

Run DFHCSDUP using the following deck (the language for TIRMQTDX may be changed, if
necessary),

DEFINE TRANSACTION(TITD)
DESCRIPTION(COOL:Gen Transaction dispatcher)
PROGRAM(TIRMQTDC)
TASKDATALOC(ANY)
GROUP(TDCGROUP)
DEFINE PROGRAM(TIRMQTDC)
DESCRIPTION(COOL:Gen Transaction dispatcher)
LANGUAGE(ASSEMBLER)
DATALOCATION(ANY)
GROUP(TDCGROUP)
DEFINE PROGRAM(TIRMQTDX)
DESCRIPTION(COOL:Gen Transaction dispatcher control exit)
LANGUAGE(LE370)
DATALOCATION(ANY)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 62

GROUP(TDCGROUP)

4.4.2 Networking
In order for MQSeries to communicate and exchange messages within the defined infrastructure
network connectivity tasks must be completed. First, determine what port the system will use for
the listener process. The default port is 1414. A determination must be made during installation
to verify that this port is available and not previously defined. Once the port has been decided
upon, contact the necessary networking personnel to request all firewalls, gateways and routers
between the VDC and NSLDS be configured to include the IP protocol with telnet, ping, and ftp
capability.

4.4.3 Configuration
The following are configuration steps required to migrate the NSLDS Cool:Gen system to the
production environment,

1) Modify the system startup and shutdown procedures to replicate what was done for MQSeries
on the test system.

2) Move the script file T048DEV1.TST to the production system. Modify it with the necessary
object names for the production system.

3) Modify the script file T048DEV1.TST with the MQSeries definitions for the production
system.

4.5 EAI Component Migration for PEPS

4.5.1 System Installation
The EAI Core components for the PEPS system require the following pre-requisites be installed
in advance of migrating the Release 1 EAI components onto the PEPS production system:

• HP/UX Version HP-UX V10.x and Oracle RDBMS as required by the PEPS system

• PEPS developed stored procedures to interface with the MQ Adapter

• MQSeries Messaging Version 5.2 with MQ base Java support and the Product Extension
MA88

• IBM XML4J XML Parser 3.1.1

• MQPEPS 1.1.0.8 – EAI Core Architecture PEPS MQ Adapter

• HP hardware capacity, i.e. CPU processor, RAM, etc, as required by the PEPS production
system and DASD requirements.

4.5.2 Networking
In order for MQSeries to communicate and exchange messages within the defined infrastructure
network connectivity must be completed. First, determine what port the system will use for the
listener process. The default port is 1414. A determination must be made during installation to
verify that this port is available and not previously defined. Once the port has been decided upon,
contact the necessary networking personnel to request all firewalls, gateways and routers between

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 4: EAI COMPONENT
MIGRATION

JULY 20, 2001 54 – 54.1.5 63

the VDC and the PEPS system be configured to include the IP protocol with telnet, ping, and ftp
capability.

4.5.3 Configuration
There will be two queues associated with the PEPS MQSeries Adapter. One, an inbound queue
which, clients can put requests to the PEPS for processing and from which the PEPS MQSeries
Adapter will be triggered to perform the requests. The other, an outbound queue, which the PEPS
MQSeries Adapter will put results obtained from processing of a PEPS stored procedure to be
returned to the calling application.

Develop and install MQSeries start and stop scripts to provide for an orderly shutdown of the
system by the system administrator, and to provide the automatic startup of the MQSeries
messaging component upon system startup.

MQSeries Objects used on the development and test systems are defined in Deliverable 54.1.3 –
EAI Technical Specifications Document Release 1. These objects will have to be reviewed and
may require modification based on the application requirements for enabling an application onto
the EAI Bus using the PEPS system.

